

#### User's manual version information

| Version     | Date        | Modification      | Compiled by |
|-------------|-------------|-------------------|-------------|
| Version 1.0 | 20.10.2014. | First edition     | Petri       |
| Version 1.1 | 12.01.2015. | Minor corrections | Petri-Poka  |
|             |             |                   |             |
|             |             |                   |             |
|             |             |                   |             |
|             |             |                   |             |

#### CONTENTS

| 1 A | Applicati | ion of the current input function                                                   | .4 |
|-----|-----------|-------------------------------------------------------------------------------------|----|
|     |           | ameter setting                                                                      |    |
|     |           | Summary of the parameters<br>Setting the rated secondary current                    |    |
|     |           | Setting the positive direction of the currents<br>Setting the rated primary current |    |
|     |           | lication of the on-line measurements in commissioning                               |    |
|     |           | mples                                                                               |    |
|     |           | Residual current measurement<br>Application of core-balanced CT                     |    |

## **1** Application of the current input function

The application of the current inputs depends on the correct connection of the hardware terminals and also on the correct parameter setting for the CT4 function block. This guide describes examples, based on which any other combinations can be realized.

In the applications of the current transformer hardware module, the first three current inputs (terminals 1-2, 3-4, 5-6) receive the three phase currents (IL1, IL2, IL3), the fourth input (terminals 7-8) is reserved for zero sequence current, for the zero sequence current of the parallel line or for any additional currents. Accordingly, the first three inputs have common parameters while the fourth current input needs individual setting.

The CT4 function block is an independent module in the sense that:

- It has independent parameters to be set, associated to the current inputs,
- It delivers the sampled current values for protection, measurement function blocks and for disturbance recording and for on-line displaying,
- It provides parameters for the subsequent functions blocks for scaling the measured currents.
- It performs the basic calculations
  - o Fourier basic harmonic magnitude and angle,
  - o True RMS value.

## **1.1. Parameter setting**

#### 1.1.1. Summary of the parameters

The parameters of the current input function are explained in the following tables.

#### **Enumerated parameters**

| Parameter name                                                                                                                                 | Title                                        | Selection range     | Default |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------|---------|--|--|
| Rated secondary current of the first three input channels. 1A or 5A is selected by parameter                                                   |                                              |                     |         |  |  |
| setting, no hardware mod                                                                                                                       | setting, no hardware modification is needed. |                     |         |  |  |
| CT4_Ch13Nom_EPar_                                                                                                                              | CT4_Ch13Nom_EPar_ Rated Secondary I1-3       |                     | 1A      |  |  |
| Rated secondary current of the fourth input channel. 1A or 5A (0.2A, 1A) is selected by parameter setting, no hardware modification is needed. |                                              |                     |         |  |  |
| CT4_Ch4Nom_EPar_                                                                                                                               | Rated Secondary I4                           | 1A,5A<br>(0.2A, 1A) | 1A      |  |  |
| Definition of the positive direction of the first three currents, given by location of the secondary star connection point                     |                                              |                     |         |  |  |
| CT4_Ch13Dir_EPar_                                                                                                                              | Starpoint I1-3                               | Line,Bus            | Line    |  |  |
| Definition of the positive direction of the fourth current, given as normal or inverted                                                        |                                              |                     |         |  |  |
| CT4_Ch4Dir_EPar_                                                                                                                               | Direction I4                                 | Normal, Inverted    | Normal  |  |  |

Table 1-1 The enumerated parameters of the current input function

#### Floating point parameters

| Parameter name                      | Title              | Dim. | Min | Max  | Default |
|-------------------------------------|--------------------|------|-----|------|---------|
| Rated primary current of channel1-3 |                    |      |     |      |         |
| CT4_Pril13_FPar_                    | Rated Primary I1-3 | А    | 100 | 4000 | 1000    |
| Rated primary current of channel4   |                    |      |     |      |         |
| CT4_Pril4_FPar_                     | Rated Primary I4   | А    | 100 | 4000 | 1000    |

Table 1-2 The floating point parameters of the current input function

NOTE: The rated primary current of the channels is not needed for the current input function block itself. These values are passed on to the subsequent function blocks.

## **1.1.2. Setting the rated secondary current**

The scaling of the currents (even hardware scaling) depends on parameter setting.

#### Rated Secondary I1-3 and Rated Secondary I4

Select the rated secondary current according to the nominal data of the main current transformer. The options to choose from are 1A or 5A (in special applications, 0.2A or 1A). This parameter influences the internal number format and, naturally, accuracy. (A small current is processed with finer resolution if 1A is selected.) The first parameter is common for the first three channels and the second one is applied for the fourth channel.

NOTE: when selecting from the available choice, no hardware modification is needed.

## **1.1.3. Setting the positive direction of the currents**

The positive direction of the currents influences the correct operation of directionality (e.g. distance protection, directional overcurrent protection, power calculation, etc.) If needed, the currents can be inverted by setting parameters. This is equivalent to interchanging the two wires, connecting the currents to the inputs.

#### Starpoint I1-3 and Direction I4.

Starpoint I1-3 applies to each of the channels IL1, IL2 and IL3. The example of Figure 1-1 below shows the connection and the correct parameter setting for Starpoint I1-3=Line. The current L1 is connected to terminal No1 of the CT input, the current L2 to No3, and the current L3 to No5. The common point of the CT inputs is the connected No2-No4-No6. This point leads the residual current to the input No7. The connection point No8 is connected with the fourth wire to the star-point of the CTs. This application of the fourth channel is the "Normal" direction.

If the currents are connected not this way then change the parameter values accordingly.

## **1.1.4. Setting the rated primary current**

These parameters are needed only to display the currents (and powers) in primary scale. The protection function apply secondary values, these parameters are not needed for protection functions.

#### Rated Primary I1-3 and Rated Primary I-4

Select the rated primary currents according to the nominal data of the main current transformers. The first parameter (Rated Primary I1-3) is common for the first three channels and the second (Rated Primary I-4) is for the fourth channel.

# 1.2. Application of the on-line measurements in commissioning

The **measured values** of the current input function block are listed and explained in the Table below.

| Measured value  | Dim.         | Explanation                                           |
|-----------------|--------------|-------------------------------------------------------|
| Current Ch - I1 | A(secondary) | Fourier basic component of the current in channel IL1 |
| Angle Ch - I1   | degree       | Vector position of the current in channel IL1         |
| Current Ch – I2 | A(secondary) | Fourier basic component of the current in channel IL2 |
| Angle Ch – I2   | degree       | Vector position of the current in channel IL2         |
| Current Ch – I3 | A(secondary) | Fourier basic component of the current in channel IL3 |
| Angle Ch – I3   | degree       | Vector position of the current in channel IL3         |
| Current Ch – I4 | A(secondary) | Fourier basic component of the current in channel I4  |
| Angle Ch – I4   | degree       | Vector position of the current in channel I4          |

Table 1-3 The measured analogue values of the current input function

NOTE1: The scaling of the Fourier basic component is such that if pure sinusoid 1A RMS of the rated frequency is injected, the displayed value is 1A.

NOTE2: The reference of the vector position depends on the device configuration. If a voltage input module is included, then the reference vector (vector with angle 0 degree) is the vector calculated for the first voltage input channel of the first applied voltage input module. If no voltage input module is configured, then the reference vector (vector with angle 0 degree) is the vector calculated for the first current input channel of the first applied current input module. (The first input module is the one, located closer to the CPU module.)

## 1.3. Examples

When the vector position of the currents are relevant (e.g. distance protection, directional overcurrent protection, power measurement, etc.) then mind the correct connection of the instrument transformers and the related parameter setting. If the wires of the secondary cables are interchanged then change also the related parameter values.

#### 1.3.1. Residual current measurement

Figure 1-1 shows a connection example with 3lo measurement. The star-point of the CT-s is towards the line, L1 is connected to terminal No1 of the CT input, L2 to No3, L3 to No5. The common point of the CT inputs is the connected No2-No4-No6. This point leads the residual current to the input No7. The connection point No8 is connected with the fourth wire to the star-point of the CTs.



Figure 1-1 Example: CT connection with 3Io measurement

The related proposed parameter setting is the screen-shot of Figure 1-2. Parameter "Starpoint I1-3" is set to "Line", indicating that the star-point is toward the protected object (line). The parameter "Direction I4" is set to "Normal", indicating that the residual current flows in to terminal No7 and the star point of the primary current transformer is toward the protected object (line).

|                      | Device value<br>(Default_set_1) | New value |   |   |                  |
|----------------------|---------------------------------|-----------|---|---|------------------|
| Rated Secondary I1-3 | 1A                              | 1A        | * |   |                  |
| Rated Secondary I4   | 1A                              | 1A        | ~ |   |                  |
| Starpoint I1-3       | Line                            | Line      | ~ |   |                  |
| Direction I4         | Normal                          | Normal    | ~ |   |                  |
| Rated Primary I1-3   | 1000                            | 1000      |   | А | (100 - 4000 / 1) |
| Rated Primary I4     | 1000                            | 1000      |   | А | (100 - 4000 / 1) |

Figure 1-2 Example: Parameter setting, according to Figure 1-1

In case of normal operation of the network, the correct connection of the CT-s and the related parameter setting can be checked using the "On-line" measurements. Disconnect one phase of the protected line, e.g. L1. The expected result is shown in Figure *1-3*. The current is missing in phase L1 (Current Ch-I1 = 0) and the measured 3lo value is the vector sum of the remaining I2+I3. (Value of "Current Ch - I4" with the related "Angle - I4".

NOTE: If in this test, only the secondary current is disclosed using a short measuring cable, then the measured current in this phase is usually not zero, due to the current distribution between the low-impedance input and the impedance of the measuring cable. For correct result, additionally to the short-cicuit, also the disconnection of this input is needed. In this example the reference vector is the vector of the first voltage channel (not shown in the screenshot).

| Current Ch - I1 | 0.000 | А   |                                  |
|-----------------|-------|-----|----------------------------------|
| Current Ch - I2 | 0.502 | Α   |                                  |
| Current Ch - I3 | 0.504 | A   |                                  |
| Current Ch - I4 | 0.502 | A   | $= ((/ \times \mathbb{R}^{n})))$ |
| Angle Ch - I1   | 0     | deg |                                  |
| Angle Ch - I2   | -151  | deg |                                  |
| Angle Ch - I3   | 90    | deg |                                  |
| Angle Ch - I4   | 149   | deg |                                  |



### 1.3.2. Application of core-balanced CT

Figure *1-4* shows a connection example with 3lo measurement. The star-point of the CT-s is towards the line, L1 is connected to terminal No1 of the CT input, L2 to No3, L3 to No5. The common point of the CT inputs is the connected No2-No4-No6. The separately measured residual current is connected with the same polarity to terminals 7-8.



*Figure* 1-4 *Example: CT connection with core-balance CT application* 

This figure also indicates the proposed parameter values for this connection. The checking is similar to that, shown in Figure *1*-3.