DMV-SP COMPACT NUMERICAL MOTOR PROTECTION

Field of application

The *SigmaProt* type complex protection in respect of hardware and software is a modular device. The modules are assembled and configured according to the requirements, then the functions are determined - within the hardware limitations - by the software. This document describes the individual characteristics of a specific application: the factory configuration *DMV-SP* complex motor protection. The general description of the members of the *SigmaProt* type complex protection family can be found in document "*SigmaProt* complex protection, hardware and software description and user's manual".

The numerical motor protection **DMV-SP** of PROTECTA Electronics Co. Ltd. can be applied mainly for comprehensive protection of large, medium voltage, three-phase motors in industrial plants and auxiliary systems of electric power stations.

Main features

The *DMV-SP* complex motor protection is a member of the *SigmaProt* device family of PROTECTA Co. Ltd. It is a fully numerical type, microprocessor-based device.

- the general motor protection functions can be applied in any combinations:
 - three-phase definite time overcurrent protection (I>),
 - zero sequence overcurrent protection high current setting stage (3I₀>>),
 - zero sequence overcurrent protection low current setting stage (3I₀>),
 - negative phase sequence protection (asymmetry protection),
 - thermal overload protection,
 - overcurrent protection during motor starting,
 - locked rotor protection,
 - protection against low load (loss of load protection),
 - zero sequence overvoltage protection,
 - over/undervoltage protection.
- the generated signals and trip commands of the functions can be marshaled to output relay contacts and LED signals or PROTLOG logic equations;
- application of microprocessor technology;
- simple commissioning by displayed motor operation information;
- simple setting of parameters by local LCD or by a computer connected to one of the serial ports;
- Supervisory and control functions of the device:
 - The supervisory and control functions are performed by a dedicated microcontroller of the CPU module or by an optional control module,
 - The high resolution optional graphic LCD can perform comprehensive local man-machine operator functions,
 - The supervisory and control functions are:
 - Control of the field:
 - by local or remote operation,
 - by interlocking functions,
 - by generation of status signals,
 - by logging of events,
 - by communication with the protection functions,
 - by communication with the intelligent graphic display;
 - Sending messages from the protection functions to the supervisory and control system of the substation;
 - Receiving and performing commands from the supervisory and control system of the substation;
 - Receiving and performing commands from the local LCD.
- The device is programmed to continuous self-monitoring functions, which can be extended to the CB control circuits as well.
- In all versions of the device the same software-configuration is loaded. The individual functions can be enabled and parameterised according to the needs and the hardware version. The versions are determined by the hardware configuration.
- The events are logged by the device, which can store up to 50 evaluated events, and up to 300 digital event sequences with 1 ms time resolution.

- A real-time clock is integrated in the device with battery RAM support. This clock can be synchronised by external PC or by the supervisory and control system. Additionally a Word Time Synchroniser (GPS-OP) device made by PROTECTA Co. Ltd. is available as well.
- The disturbance recorder of the CPU module can store up to 11 disturbances, the total registering time is about 10 s.
- The device realises several measuring functions based on the available analogue signals.
- Up to eight independent parameter packages can be stored and selected in the device.

Technical Data

General technical specification see in SigmaProt system information sheet

Type tests see in **SigmaProt system information sheet**

Design and sizes see in SigmaProt system information sheet

Setting ranges:	
Motor rated current, I _n	30 to 120 %, step 2 %
in per cent of the main C.T. rated current, In / I_{CT}	
No load operation minimum threshold current (fixed)	$I_{\text{IDLE}} / I_{\text{n}} = 15 \%$
Phase fault O.C. relay starting current, $I > / I_{CT}$	50 to 1500 %, step 10 %
time delay setting, t (I>)	0 to 60000 ms, step 10 ms
Earth fault O.C. relay starting current, $3I_{O}$ / I_{CT}	10 to 100 %, step 2 %
time delay setting, $t(3I_0>)$	0 to 60000 ms, step 10 ms
Motor rated temperature rising related to the ambient	$\Theta n = 10$ to 125°C, step 1°C
temperature when the motor load is the In rated current	
Overheating alarm signal setting value	Θp / Θn=60 to 160 %, step 1 %
in per cent of the motor rated temperature rising	
Thermal overloading (overheating) trip setting value	Θt / Θn=80 to 180 %, step 1 %
in per cent of the motor rated temperature rising	
Temperature rising limit to block the restart command in	Θb / Θn=60 to 160 %, 1 %
per cent of the motor rated temperature rising	
Time constant for rotating motor temperature rising and	$T_R = 2$ to 200 min., step 1 min.
cooling	
Standing motor cooling time constant in per cent	$T_C / T_R (Tcool / Trise) =$
of the time constant for rotating motor	100 to 500 %, step 100 %
Negative sequent current weighting	0 to 6, step 1
Asymmetry protection starting value, fixed	$I_2 / I_n = 15 \%$
Asymmetry protection inverse definite minimum time	
relay, maximum time delay at fixed starting current	
IDMT type	0, 1, 2 (invz., very invz., ext.invz.)
IDMT time multiplier	1 to 256 steps 1 s /20
IDMT I _n /I _{nm}	10 to 104, step 1 %
IDMT Min. delay	50 to 500, step 1 ms
Loss of load protection starting current in per cent of the	$I_t < /$ In = 30 to 60 %, step 5 %
motor rated current	
Loss of load protection time delay	$t(I_t) = 1 \text{ to } 10 \text{ s, step } 1 \text{ s}$
Starting period setting value	$t_{st} = 5 \text{ to } 100 \text{ s, step 5 s}$
Fault during starting period, setting current	I_{st} / I_{CT} =200 to 1200 %, 10 %
At heavy starting setting, the heating current during the	I^2 / 2, fixed
starting period,	
Stalled rotor protection at the end of the starting period	$2\mathbf{x}\mathbf{I}_{n}$, (if $t > t_{st}$)
Current relays, resetting ratio	95 %, fixed

Options

- Interface to a SCADA system (see the SigmaProt system information sheet)
- Need of output contacts with 4 A DC breaking capability.

Ordering information

- Type of protection [DMV-SP]
- Rated C.T. current [1 A, 5 A]
- C.T. type of zero sequence current [main C.T., toroidal type C.T.]
- In case of toroidal type C.T., its ratio [150/1A or others]
- Auxiliary DC voltage [220 V, 110 V, or other]