

# complex protection,

## **Technical information**

Document ID: EP-13-



Budapest, August 2008.



## Contents

| The EuroProt device family                                                           | . 3 |
|--------------------------------------------------------------------------------------|-----|
| Design                                                                               | 4   |
| The front panel versions                                                             | 5   |
| The available hardware modules                                                       |     |
| Power supply module                                                                  |     |
| Analogue input modules                                                               | 7   |
| Current transformer inputs                                                           |     |
| Voltage transformer inputs                                                           | 8   |
| Binary input modules                                                                 | 8   |
| Output relay modules                                                                 |     |
| Analogue signal transmitter modules 1                                                | 10  |
| Fibre optic communication modules1                                                   | 11  |
| Communication with the CPU modules 1                                                 | 12  |
| Type tests 1                                                                         |     |
| Characteristics of the integrated disturbance recorder1                              | 15  |
| Characteristics of the integrated event recorder1                                    | 15  |
| Communication with EuroProt-IED multifunctional intelligent devices 1                | 16  |
| Local man-machine interface 1                                                        | 17  |
| Operation with computers using Windows operating system 1                            | 19  |
| The EuroProt-IED multifunctional device in the substation monitoring and supervising |     |
| system2                                                                              | 25  |
|                                                                                      |     |

| Compiled by:     | Approved by:    | Datum:     | Page: |
|------------------|-----------------|------------|-------|
| Dr. Kornél Petri | László Eperjesi | 05.08.2008 | 2/27  |





The versions of the EuroProt product family

## The EuroProt device family

The EuroProt device family of Protecta Electronics Co. Ltd. has been designed to perform all protection and control functions of the electric power system. The devices of this product line can protect the power system elements of the medium and high voltage levels. They can be applied in power stations, substations and by industrial consumers as well.

The *EuroProt* type complex protection in respect of hardware and software is a modular device. The modules is assembled and configured according to the requirements, and then the software determines the functions.

This manual summarises the technical information, common to all devices of the EuroProt product line. The individual characteristics of the specific applications are described in the manuals of the device factory configurations.

| Compiled by:     | Approved by:    | Datum:     | Page: |
|------------------|-----------------|------------|-------|
| Dr. Kornél Petri | László Eperjesi | 05.08.2008 | 3/27  |





Rear view of a EuroProt device

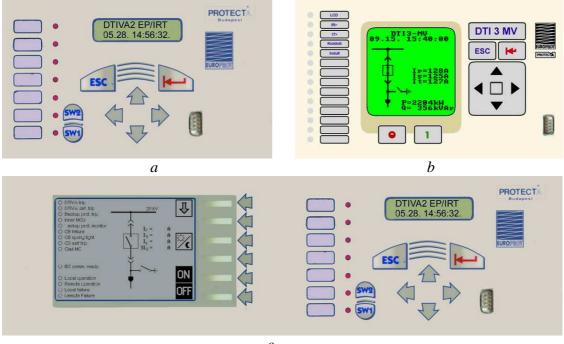
## Design

The EuroProt devices are produced in two designs and in three sizes. All versions are mounted in standard 19" racks. The two designs are the relay panel mounted version and the cabinet or flash-mounted version. The sizes are determined by the number of applied modules. The table below show the size range of the EuroProt devices.

| Cabinet mounted or flash-mounted design (mm) |             |       |                                  |  |
|----------------------------------------------|-------------|-------|----------------------------------|--|
| Width                                        | Height      | Depth | Front panel version <sup>1</sup> |  |
| 269                                          |             |       | a, b                             |  |
| 376                                          | 132.5       | 201   | a, b                             |  |
| 483                                          |             |       | a, b, c                          |  |
| Relay panel mounted d                        | lesign (mm) |       |                                  |  |
| Width                                        | Height      | Depth | Front panel version <sup>1</sup> |  |
| 277                                          |             |       | a, b                             |  |
| 384                                          | 250         | 250   | a, b                             |  |
| 490                                          |             |       | a, b, c                          |  |

<sup>1</sup>See the front panel versions below

#### **Connector types**


| Current connections <sup>1</sup> | Weidmüller STVS SB - SS |
|----------------------------------|-------------------------|
| All other connections            | Weidmüller SLA – BLA    |

<sup>1</sup>See the rightmost module (on the rear view) of the picture above.

| Compiled by:     | Approved by:    | Datum:     | Page: |
|------------------|-----------------|------------|-------|
| Dr. Kornél Petri | László Eperjesi | 05.08.2008 | 4/27  |



## The front panel versions



*c Versions of the front panel* 

| Compiled by:     | Approved by:    | Datum:     | Page: |
|------------------|-----------------|------------|-------|
| Dr. Kornél Petri | László Eperjesi | 05.08.2008 | 5/27  |



### The available hardware modules

The *EuroProt* type complex protection devices are compiled of hardware modules. All EuroProt devices must contain the following hardware modules:

| HW module | Function                                                                                                                                                                                                                                                                                                                                                  |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CPU       | <ul> <li>Central processing unit containing: <ul> <li>the main processor with the additional electronic elements,</li> <li>the signal processor performing the protections functions,</li> <li>additional signal processor for the communication and SCADA functions,</li> <li>integrated disturbance recorder and event recorder.</li> </ul> </li> </ul> |
| Т         | Power supply unit.                                                                                                                                                                                                                                                                                                                                        |

The usual modules for most devices:

| HW module | Function                                         |
|-----------|--------------------------------------------------|
| СТ        | Analogue input module with current transformers; |
| VT        | Analogue input module with voltage transformers; |
| R         | Output module with relays;                       |
| 0         | Digital input module with optical couplers.      |

Optional modules to be applied according to the requirements:

| HW module | Function                                                                      |
|-----------|-------------------------------------------------------------------------------|
| OX        | Optically isolated communication modules for large distant data communication |
| M_A       | Module for checking the CB operating circuits;                                |
| ZI        | Independent disturbance recorder module;                                      |
| TA        | 420 mA signal transmitter module;                                             |
| AnInp     | 420 mA signal receiver module;                                                |
| Pt100     | Pt100 signal input module;                                                    |
| XX        | Special module for the SCADA system, produced by other firms.                 |

| Compiled by:     | Approved by:    | Datum:     | Page: |
|------------------|-----------------|------------|-------|
| Dr. Kornél Petri | László Eperjesi | 05.08.2008 | 6/27  |



#### Power supply module

| Power supply | Nominal              | Operating    | Stored energy <sup>1</sup> |
|--------------|----------------------|--------------|----------------------------|
|              | voltage <sup>1</sup> | range        |                            |
|              | 24 V DC              | ±20% DC      | 0, 10, 20, 60, 100 ms      |
|              | 48 V DC              | ±20% DC      | 0, 10, 20, 60, 100 ms      |
|              | 110 V DC             | ±20% DC/AC   | 0, 10, 20, 60, 100 ms      |
|              | 220 V DC             | ±20% DC/AC   | 0, 10, 20, 60, 100 ms      |
|              | 110/220 V DC         | 88 - 264V    | 0, 10, 20, 60, 100, 200 ms |
|              | 100 V AC             | -20, +10% AC | 0, 10, 20, 60, 100 ms      |
|              | 230 V AC             | -20, +10% AC | 0, 10, 20, 60, 100 ms      |

<sup>1</sup> Options, to be selected at ordering stage

#### Analogue input modules

#### **Current transformer inputs**

| Current inputs | Nominal current    | Inom <sup>1</sup>       | 1 A / 5 A <sup>1</sup>                       |
|----------------|--------------------|-------------------------|----------------------------------------------|
| _              | Nominal frequency  |                         | 50 Hz                                        |
|                | CT thermal ratings | continuous              | 4 * Inom                                     |
|                |                    | 1 s                     | 100 * Inom                                   |
|                | CT dynamical       | 10 ms                   | 250 * Inom                                   |
|                | ratings            |                         |                                              |
|                | Consumption        | Inom = $1 \text{ A}$    | <0.02 VA                                     |
|                |                    | Inom = 5 A              | <0.1 VA                                      |
|                | Nominal current    |                         | $0.1 \text{A or } 0.5 \text{A}^2$            |
|                | Inom <sup>2</sup>  |                         |                                              |
|                | Nominal frequency  |                         | 50 Hz                                        |
|                | CT thermal ratings | continuous              | 4 * Inom                                     |
|                |                    | 1 s                     | 100 * Inom                                   |
|                | CT dynamical       | 10 ms                   | 250 * Inom                                   |
|                | ratings            |                         |                                              |
|                | Consumption        | Inom = $0.1 \text{ A}$  | <0.02 VA                                     |
|                |                    | Inom = $0.5 \text{ A}$  | <0.1 VA                                      |
|                | Nominal current    | Inom <sup>2</sup>       | $0.025 \text{A} \text{ or } 0.05 \text{A}^2$ |
|                | Nominal frequency  |                         | 50 Hz                                        |
|                | CT thermal ratings | continuous              | 4 * Inom                                     |
|                |                    | 1 s                     | 100 * Inom                                   |
|                | CT dynamical       | 10 ms                   | 250 * Inom                                   |
|                | ratings            |                         |                                              |
|                | Consumption        | Inom = 0.025 A          | <0.02 VA                                     |
|                |                    | Inom = $0.05 \text{ A}$ | <0.1 VA                                      |

<sup>1</sup>Can be changed by soldering

| Compiled by:     | Approved by:    | Datum:     | Page: |
|------------------|-----------------|------------|-------|
| Dr. Kornél Petri | László Eperjesi | 05.08.2008 | 7/27  |



#### Voltage transformer inputs

| Voltage inputs | Nominal Voltage    |            | 100/√3V   |  |
|----------------|--------------------|------------|-----------|--|
|                | Unom <sup>1</sup>  |            | / 200 √3V |  |
|                | Nominal frequency  |            | 50 Hz     |  |
|                | VT thermal ratings | continuous | 2 * Unom  |  |
|                | Consumption        |            | <0.7 W    |  |

<sup>1</sup> Options, to be selected at the ordering stage

#### **Binary input modules**

| Binary inputs | Nominal Voltage | Unom <sup>1</sup> | 24 V / 48 V / 110 V / 220V DC |
|---------------|-----------------|-------------------|-------------------------------|
|               | Consumption     |                   | <0.4 W                        |

<sup>1</sup> Options, to be selected at the ordering stage

| Rated voltage                   | Un        | 24V DC       | 48V DC | 110V DC | 220V          |
|---------------------------------|-----------|--------------|--------|---------|---------------|
|                                 |           |              |        |         | DC            |
| Operating voltage at rated      | 0.7*Un    | 17V          | 34V    | 77V     | 154V          |
| temperature                     | $\pm 5\%$ | $\pm 5\% DC$ | ±5%DC  | ±5%DC   | ±5%DC         |
| Operating voltage in the        | 0.7*Un    | 17V          | 34V    | 77V     | 154V          |
| temperature range of            | ±20%      | ±20%DC       | ±20%DC | ±20%DC  | $\pm 20\% DC$ |
| $-25^{\circ}C+55^{\circ}C$      |           |              |        |         |               |
| Minimal drop-off difference of  | 0.04*Un   | 1V           | 2V     | 4.4V    | 8.8V          |
| the input voltage in the        |           |              |        |         |               |
| temperature range of            |           |              |        |         |               |
| $-25^{\circ}C+55^{\circ}C$      |           |              |        |         |               |
| RMS value of the power          |           | 10V AC       | 22V AC | 50V AC  | 100V          |
| frequency voltage on the        |           |              |        |         | AC            |
| input, not generating operation |           |              |        |         |               |
| Steady state impedance on       |           | 12.4kΩ       | 27kΩ   | 60kΩ    | 150kΩ         |
| operating voltage (min.)        |           |              |        |         |               |
| Steady state impedance on       |           | 0.24kΩ       | 0.6kΩ  | 2kΩ     | 4kΩ           |
| drop-off voltage (max)          |           |              |        |         |               |

| Compiled by:     | Approved by:    | Datum:     | Page: |
|------------------|-----------------|------------|-------|
| Dr. Kornél Petri | László Eperjesi | 05.08.2008 | 8/27  |



## Output relay modules

| Output relays | Output contact rated voltage                               | Uk           | 250V DC     |
|---------------|------------------------------------------------------------|--------------|-------------|
|               | Output contact rated continuous load                       | Ik           | 8A DC       |
|               | current                                                    |              |             |
|               | Output contact making current                              |              | 16A DC      |
|               | Output contact breaking current<br>L/R= 40ms load, at 220V |              | 0,2A DC     |
|               | Output contact breaking current conductive load, at 220V   |              | 0,25A DC    |
|               | Insulation test surge voltage                              |              | 5 kV 1,2/50 |
|               |                                                            |              | μs          |
|               | 50 Hz power frequency insulation test                      |              | 2kV RMS     |
|               | 1 min                                                      |              |             |
|               | Rated coil voltage                                         | Un           | 18V DC      |
|               | Operating voltage in the temperature                       | 0,5 - 0,83Un | 9V-15V      |
|               | range of -20°C+50°C                                        |              | DC          |
|               | Minimal drop-off difference of the input                   | 0,27Un       | 5V          |
|               | voltage in the temperature range of                        |              |             |
|               | $-20^{\circ}\text{C}+50^{\circ}\text{C}$                   |              |             |

| Output relays | Output contact rated voltage             | Uk           | 250V DC     |
|---------------|------------------------------------------|--------------|-------------|
| (increased    | Output contact rated continuous load     | Ik           | 8A DC       |
| breaking      | current                                  |              |             |
| capacity)     | Output contact making current            |              | 16A DC      |
|               | Output contact breaking current          |              | 4A DC       |
|               | L/R=40ms load, at 220V                   |              |             |
|               | Output contact breaking current          |              | 4A DC       |
|               | conductive load, at 220V                 |              |             |
|               | Insulation test surge voltage            |              | 5 kV 1,2/50 |
|               |                                          |              | μs          |
|               | 50 Hz power frequency insulation test    |              | 2kV RMS     |
|               | 1 min                                    |              |             |
|               | Rated coil voltage                       | Un           | 18V DC      |
|               | Operating voltage in the temperature     | 0,5 - 0,83Un | 9V-15V      |
|               | range of $-20^{\circ}C+50^{\circ}C$      |              | DC          |
|               | Minimal drop-off difference of the input | 0,27Un       | 5V          |
|               | voltage in the temperature range of      |              |             |
|               | $-20^{\circ}\text{C}+50^{\circ}\text{C}$ |              |             |

| Compiled by:     | Approved by:    | Datum:     | Page: |
|------------------|-----------------|------------|-------|
| Dr. Kornél Petri | László Eperjesi | 05.08.2008 | 9/27  |



### Analogue signal transmitter modules

| Analogue    | Output current range       | Ι   | 020/420/   | 06/±6        | 420/0  |
|-------------|----------------------------|-----|------------|--------------|--------|
| signal      |                            |     | 06 mA      | mA           | 20     |
| transmitter |                            |     |            |              | mA     |
|             | Output current resolution  |     | 12 bi      | ts, 1 in 409 | 6      |
|             | Accuracy                   |     |            | ±1%          |        |
|             | Max load resistance        | Ri  | 1kΩ        | 2kΏ          | 1kΏ    |
|             | Settling time to 0,5%      | ts  |            | <10ms        |        |
|             | Power supply voltage       | Ups | 220/110/48 | (Intern      | al PS) |
|             |                            |     | $V DC^4$   |              |        |
|             | Power supply voltage range |     | Ups±10%    |              |        |
|             | Signal transmission time   | tt  |            | 100 ms       |        |
|             |                            |     |            |              |        |

<sup>4</sup>This module type needs independent power supply input

| Compiled by:     | Approved by:    | Datum:     | Page: |
|------------------|-----------------|------------|-------|
| Dr. Kornél Petri | László Eperjesi | 05.08.2008 | 10/27 |



## Fibre optic communication modules

| OX module | Optical code                         | Manchester      |  |
|-----------|--------------------------------------|-----------------|--|
|           | Optical frequency                    | 10 MHz          |  |
|           | Communication speed                  | 1.2 Mbit/s      |  |
|           | Optical sending element              | Laser diode     |  |
|           | "Single" mode (SM) cable application |                 |  |
|           | Wave length                          | 1300 or 1550 nm |  |
|           | Optical power                        | > -7 dBm        |  |
|           | Optical receiver                     | InGaAs diode    |  |
|           | Receiver sensitivity                 | < -35 dBm       |  |
|           | Optical connector                    | FC PC           |  |
|           | Fibre optic cable internal diameter  | μnm             |  |
|           | Maximal distance                     | >100 km         |  |
|           | "Multi" mode (MM) cable application  |                 |  |
|           | Wave length                          | 850 nm          |  |
|           | Optical power                        | > -15 dBm       |  |
|           | Optical receiver                     | InGaAs diode    |  |
|           | Receiver sensitivity                 | < -30 dBm       |  |
|           | Optical connector                    | ST              |  |
|           | Fibre optic cable internal diameter  | 50 or 62.5 μm   |  |
|           | Maximal distance                     | 2-4 km          |  |

| Compiled by:     | Approved by:    | Datum:     | Page: |
|------------------|-----------------|------------|-------|
| Dr. Kornél Petri | László Eperjesi | 05.08.2008 | 11/27 |



#### Communication with the CPU modules

| FO            | Communication speed                   | Max. 38400 Baud |
|---------------|---------------------------------------|-----------------|
| communication | Plastic fibre optic cable application |                 |
| with the CPU  | Wave length                           | 660 nm          |
| module        | Optical power                         | > -16 dBm       |
|               | Optical receiver                      | InGaAs diode    |
|               | Receiver sensitivity                  | < -21 dBm       |
|               | Optical connector                     | POF             |
|               | Fibre optic cable diameter            | 1 mm            |
|               | Maximal distance >60 m                |                 |
|               | "Multi" mode (MM) cable application   |                 |
|               | Wave length                           | 820 nm          |
|               | Optical power                         | > -15 dBm       |
|               | Optical receiver                      | InGaAs diode    |
|               | Receiver sensitivity                  | < -24 dBm       |
|               | Optical connector                     | ST              |
|               | Fibre optic cable internal diameter   | 50 or 62.5 μm   |
|               | Maximal distance                      | 2 km            |
|               | Ethernet                              |                 |
|               | Connector                             | RJ45            |

| Compiled by:     | Approved by:    | Datum:     | Page: |
|------------------|-----------------|------------|-------|
| Dr. Kornél Petri | László Eperjesi | 05.08.2008 | 12/27 |



## Type tests

| Electrical type tests                  |                                |                |
|----------------------------------------|--------------------------------|----------------|
| Electrostatic discharge tests          | IEC 60255-22-2 : 1989, level 4 | EN 61000-4-2   |
|                                        |                                | Class 4        |
| Radiated electromagnetic field         | IEC 60255-22-3 : 1989          | EN 61000-4-3   |
|                                        |                                | Class 3        |
| Electrical fast transient (Burst) test | IEC 60255-22-4                 | EN 61000-4-4   |
|                                        |                                | Class 4        |
| Surge test                             | IEC 60255-22-5                 | EN 61000-4-5   |
| -                                      |                                | Class 4        |
| Conductive radio disturbances          | IEC 60255-22-6                 | EN 61000-4-6   |
|                                        |                                | Class 3        |
| Power frequency disturbances           | IEC 60255-22-7                 |                |
|                                        | Class A                        |                |
| Power frequency magnetic fields        |                                | EN 61000-4-8 : |
|                                        |                                | Class 4        |
| DC supply interruption                 | IEC 60255-11                   | EN 61000-4-11  |
|                                        | 0.1s/100% at 220 V             |                |
| 1 MHz burst disturbance test           | IEC 60255-22-1 : 1988          | EN 61000-4-12  |
|                                        | IEEE C37.90.1 : 1989           | Class III      |
| Disturbance test for mains             |                                | EN 61000-4-28  |
| frequency changes                      |                                |                |
| Disturbance test for short voltage     |                                | EN 61000-4-29  |
| dips and voltage variations of the     |                                |                |
| DC input port                          |                                |                |
| Insulation tests                       | IEC 60255-5: 1994              |                |
|                                        | Class 3                        |                |
| Impulse voltage test                   | IEC 255-5 : 1994 5 kV 0.5J     |                |

| Compiled by:     | Approved by:    | Datum:     | Page: |
|------------------|-----------------|------------|-------|
| Dr. Kornél Petri | László Eperjesi | 05.08.2008 | 13/27 |



| Mechanical stress tests |                                |
|-------------------------|--------------------------------|
| Vibration test:         | IEC 60255-21-1 : 1988, Class 1 |
| Shock test:             | IEC 60255-21-2 : 1988, Class 1 |
| Seismic test:           | IEC 60255-21-3 : 1993, Class 1 |
| Climatic tests          | IEC 68-2-30 : 1980             |

| Protection | IEC 529 IP |                |
|------------|------------|----------------|
|            | Front side | IP $50/(54)^1$ |
|            | Rear side  | IP 20          |

<sup>1</sup> Option, to be selected at ordering stage

| Operating temperature range | -10°C+55°C         |  |
|-----------------------------|--------------------|--|
| Storage temperature range   | -40°C+70°C         |  |
| Humidity range              | ≤75% (annual mean) |  |

| Compiled by:     | Approved by:    | Datum:     | Page: |
|------------------|-----------------|------------|-------|
| Dr. Kornél Petri | László Eperjesi | 05.08.2008 | 14/27 |

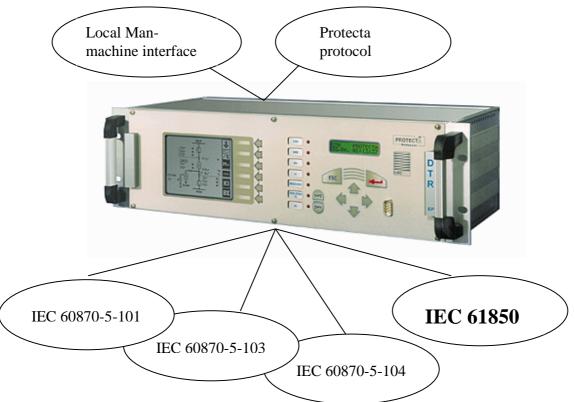


## Characteristics of the integrated disturbance recorder

| Max. number of records       | With cyclic overwriting  | 10                        |
|------------------------------|--------------------------|---------------------------|
| Storage capacity of a record |                          | 64 kByte                  |
| Storage requirements         | Analogue sample          | 2 byte                    |
|                              | 8 binary samples         | 1 byte                    |
| Sampling rate                |                          | 1 ms                      |
| Approximate time span of a   | Using 8 analogue samples | 3.2 s                     |
| record                       | and 32 binary samples    |                           |
| Starting                     | Programmed with          | Binary signal level /     |
|                              | PROTLOG equations        | Binary signal rising edge |
| Factory settings             | Pre-fault time           | 200 ms                    |
|                              | Post-fault time          | 200 ms                    |
| Data format                  |                          | Protecta ".zav"           |
| Data export format           |                          | COMTRADE                  |
| Data transfer                |                          | "Protect for Windows"     |
|                              |                          | software                  |
| Evaluation                   |                          | "Zirert" software         |
|                              |                          | (or any COMTRADE          |
|                              |                          | evaluation software)      |

## Characteristics of the integrated event recorder

| Time stamp resolution                    | 1 ms |
|------------------------------------------|------|
| Number of stored events                  | 300  |
| Max number of binary signals in an event | 63   |

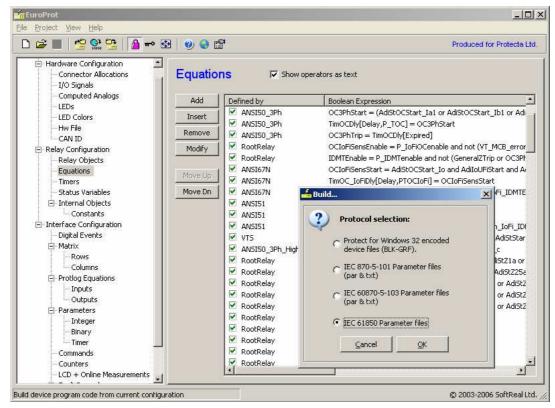

| Compiled by:     | Approved by:    | Datum:     | Page: |
|------------------|-----------------|------------|-------|
| Dr. Kornél Petri | László Eperjesi | 05.08.2008 | 15/27 |



# Communication with EuroProt-IED multifunctional intelligent devices

The intelligent multifunctional EuroProt devices made by Protecta - parallel to the development in the power system protection and the microprocessor technology - keep pace with the development of the communication technology as well. Following the first data exchange with computers using Protecta communication protocol, the international communication standards (IEC 60870-5-101, IEC 60870-5-103, IEC 60870-5-104) have been realised in quick sequence after each other, and as an example for co-operation with devices of other manufacturers, the ABB SPA protocol has been applied too. As the result of the latest development activities, the EuroProt – IED (intelligent electronic devices) can be involved in the communication system according to the international IEC 61850 standard. (See Fig. 1)

Meeting the requirements of the IEC 61850 standard means that the EuroProt – IED devices can participate in the information exchange of the devices from other manufacturers, applying this international standard.




Communication with EuroProt IED devices

| Compiled by:     | Approved by:    | Datum:     | Page: |
|------------------|-----------------|------------|-------|
| Dr. Kornél Petri | László Eperjesi | 05.08.2008 | 16/27 |



The Fig. below shows one step of the factory configuration procedure for the EuroProt multifunctional intelligent devices: the protocol selection.



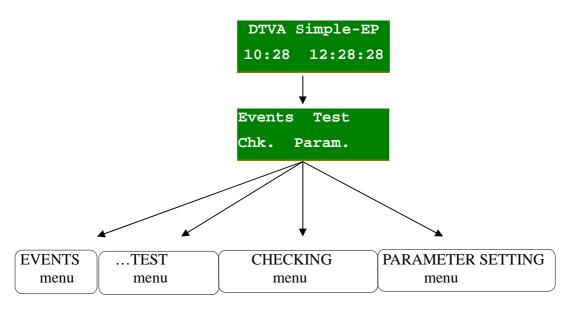
Protocol selection in the factory configuration process of the EuroProt IED devices

This brochure summarises the possibilities of communication with EuroProt intelligent multifunctional protective devices.

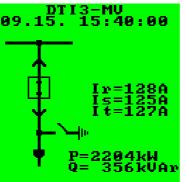
#### Local man-machine interface

Tasks of the local man-machine interface:

- Parameter setting,
- Parameter supervision,
- Displaying on-line measured values one-by-one,
- Request of the stored event log,
- Displaying messages.


The local man-machine interface is located on the front side of the device (see Fig.1); it consists of an alphanumeric or graphic display, of eight push-buttons and of fourteen LED-

| Compiled by:     | Approved by:    | Datum:     | Page: |
|------------------|-----------------|------------|-------|
| Dr. Kornél Petri | László Eperjesi | 05.08.2008 | 17/27 |




s. The configuration of the front side can be extended with a large graphic display as well, which provides additional six programmable push-buttons too.

The alphanumeric display and its menu system are shown on Fig.3, the small graphic LCD on Fig.4. The front cover of this brochure shows a device, which is configured with a large graphic display and six additional push-buttons.



The alpha-numeric display and the associated menu system (in a possible configuration)



*The 128\*128 pixel LCD display (in a possible configuration)* 

| ./       |              |              |
|----------|--------------|--------------|
| $\gamma$ |              | $\checkmark$ |
|          | $\checkmark$ |              |
|          |              |              |
|          |              |              |

The possible combinations of the displays

| Compiled by:     | Approved by:    | Datum:     | Page: |
|------------------|-----------------|------------|-------|
| Dr. Kornél Petri | László Eperjesi | 05.08.2008 | 18/27 |



#### **Operation with computers using Windows operating system**

The operation of the device is more convenient if additionally to the local man-machine interface a serial connector or an Ethernet interface is used as well, which connects the device to a computer running under Windows operating system, and using the "**Protect for Windows**" operating software. The protocol of this communication is the own protocol, developed by Protecta.

The various types of the physical interfaces are summarised in Table below.

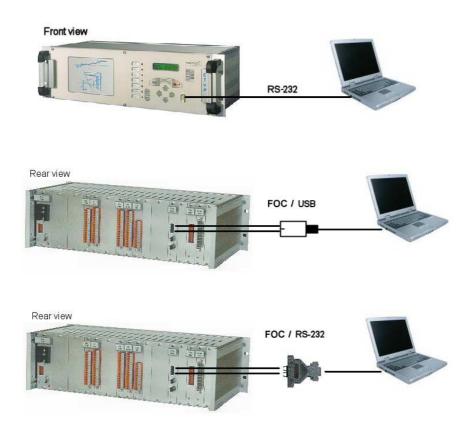
| Version a    | Version b              | Version c                            |
|--------------|------------------------|--------------------------------------|
| $\checkmark$ | $\checkmark$           | $\checkmark$                         |
| $\checkmark$ | $\checkmark$           | $\checkmark$                         |
|              | $\checkmark$           | $\checkmark$                         |
|              |                        | $\checkmark$                         |
|              | Version a $\sqrt{1-1}$ | Version aVersion b $$ $$ $$ $$ $$ $$ |

The versions of the serial connectors

The RS232 interface provides direct interconnection to a computer. When this is used, a large amount of information can be displayed on the screen of the computer, enabling easy survey of the measured and acquired data, and assures convenient operation of the device. This connection enables all services, which are available on the local man-machine interface as well.

| DB9P      | socket  |            | DB9P      | socket  |
|-----------|---------|------------|-----------|---------|
| 1         | DCD     | <b>←</b> → | - 7       | RTS     |
| 2         | RX      | ← →        | . 3       | TX      |
| 3         | TX      | 4          | 2         | RX      |
| 4         | DTR     |            | 6,8       | DSR,CTS |
|           |         |            | connected |         |
| 5         | GND     | <b>←</b> → | 5         | GND     |
| 6,8       | DSR,CTS |            | 4         | DTR     |
| connected |         | ← →        |           |         |
| 7         | RTS     | ← →        | 1         | DCD     |
| 9         | RI      | ← →        | 9         | RI      |

Specification of the serial cable


| Compiled by:     | Approved by:    | Datum:     | Page: |
|------------------|-----------------|------------|-------|
| Dr. Kornél Petri | László Eperjesi | 05.08.2008 | 19/27 |



In the harsh environment of a substation the fibre optic data communication is preferred rather than the conventional serial cable. The fibre optic cable interface is located on the rear side of the CPU module, accessed from the rear side of the device. For this kind of connection Protecta provides an RS232 / fibre optic converter, which can be connected to the serial interface of a computer. Another possibility is the fibre optic / USB converter, produced by Protecta as well. This method can be used with computers equipped with USB port.

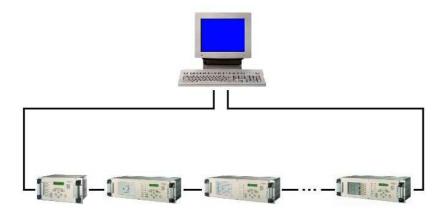
| Compiled by:     | Approved by:    | Datum:     | Page: |
|------------------|-----------------|------------|-------|
| Dr. Kornél Petri | László Eperjesi | 05.08.2008 | 20/27 |





Communication with a supervising computer

Using fibre optic communication media, not only the basic operation functions can be realised as they are mentioned above, but this is the way of uploading and evaluation of disturbance recorder records, and this connection provides possibility to upgrade the programs of the processors, stored in the flash memory of the CPU module. The picture of the withdrawn CPU module is shown on Figure below.

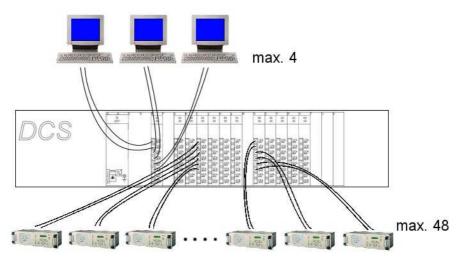

| Compiled by:     | Approved by:    | Datum:     | Page: |
|------------------|-----------------|------------|-------|
| Dr. Kornél Petri | László Eperjesi | 05.08.2008 | 21/27 |





A CPU module with fibre optic connectors for plastic cables

Using the fibre optic interface several (max.20) devices can be connected in a loop. Based on the internal address, these devices can be accessed one-by-one by the supervising computer. The construction of a fibre optic loop is shown on Figure below.




Operation of the EuroPro- IED devices in a fibre optic loop

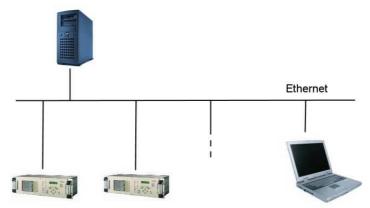
| Compiled by:     | Approved by:    | Datum:     | Page: |
|------------------|-----------------|------------|-------|
| Dr. Kornél Petri | László Eperjesi | 05.08.2008 | 22/27 |



When using the DCS type star coupler produced by Protecta, a higher reliability can be achieved as compared to the communication using fibre optic loop. With this method the failure of the individual devices does not influence the communication with the healthy devices. The application of the DCS star coupler is shown on Fig. 8.



EuroProt-IED devices with DCS type star coupler


If an Ethernet network is available, then the devices equipped with RJ45 connectors can be connected to this network too. The RJ45 version of the CPU module is shown on Figure below, the connection to an Ethernet bus is drawn on Figure below. The cabling in substation environment is preferred with STP (shielded) twisted wires instead of UTP (unshielded) cables.

| Compiled by:     | Approved by:    | Datum:     | Page: |
|------------------|-----------------|------------|-------|
| Dr. Kornél Petri | László Eperjesi | 05.08.2008 | 23/27 |





The RJ45 connectors version of the CPU module



EuroProt-IED devices in the Ethernet network

If the selected housing of the devices enables extension, then the application of the RJ45/ST converter module provides long distance fibre optic cable connection as well.

| Compiled by:     | Approved by:    | Datum:     | Page: |
|------------------|-----------------|------------|-------|
| Dr. Kornél Petri | László Eperjesi | 05.08.2008 | 24/27 |





## The EuroProt-IED multifunctional device in the substation monitoring and supervising system

In the EuroProt-IED multifunctional device a dedicated processor provides substation monitoring and supervising functions (data acquisition, control functions, interlocking, etc.) as well. This functionality is involved in the substation system by a dedicated serial connection. The connector for this purpose is located on the rear side of the CPU module. The physical connection possibilities are summarised in Table 3.

|                                       | Version | Version | Version | Version | Version |
|---------------------------------------|---------|---------|---------|---------|---------|
|                                       | Α       | В       | С       | D       | Е       |
| A pair of fibre optic connectors on   |         |         |         |         |         |
| the rear side of the CPU module       |         |         |         |         |         |
| Dual fibre optic connectors on the    |         |         |         |         |         |
| rear side of the CPU module           |         |         |         |         |         |
| Multimode glass fibre optic           |         |         |         |         |         |
| connectors (See Fig. 11)              |         |         |         |         |         |
| RJ45 network connector                |         |         |         |         |         |
| (See Fig. 9)                          |         |         |         |         |         |
| RJ45 network connector with           |         |         |         |         |         |
| RJ/ST converter module                |         |         |         |         |         |
| The physical correction possibilities | •       |         |         |         |         |

The physical connection possibilities

| Compiled by:     | Approved by:    | Datum:     | Page: |
|------------------|-----------------|------------|-------|
| Dr. Kornél Petri | László Eperjesi | 05.08.2008 | 25/27 |





Multimode glass fibre optic cable connection

The realised protocols of the communication for supervisory and control purposes are summarised by physical connectors in Table 4.

| Protocol                            | IEC 60870-5- |              | ABB- | IEC          |       |
|-------------------------------------|--------------|--------------|------|--------------|-------|
| Physical connectors                 | 101          | 103          | 104  | SPA          | 61850 |
| A pair of fibre optic connectors on | $\checkmark$ | $\checkmark$ |      | $\checkmark$ |       |
| the rear side of the CPU module     |              |              |      |              |       |
| Dual fibre optic connectors on the  | $\checkmark$ | $\checkmark$ |      |              |       |
| rear side of the CPU module         |              |              |      |              |       |
| Multimode glass fibre optic         |              |              |      | $\checkmark$ |       |
| connectors                          |              |              |      |              |       |
| RJ45 network connector              |              |              |      |              |       |
|                                     |              |              |      |              |       |

The available communication protocols

| Compiled by:     | Approved by:    | Datum:     | Page: |
|------------------|-----------------|------------|-------|
| Dr. Kornél Petri | László Eperjesi | 05.08.2008 | 26/27 |



| Compiled by:     | Approved by:    | Datum:     | Page: |
|------------------|-----------------|------------|-------|
| Dr. Kornél Petri | László Eperjesi | 05.08.2008 | 27/27 |