

E1-TR configuration description

User's manual version information

Version	Date	Modification	Compiled by
	17. 10. 2011		Petri
	15. 05. 2012	CB1Pol	Kazai, Ferencsik
1.0	21.03.2014.	Modified: 1.1.3 Hardware configuration Added: 2 External connection	Tóth

CONTENTS

1	Configurat	tion description	4
	1.1 Applic	cation	4
	1.1.1 · · F	Protection functions	4
		leasurement functions	
		lardware configuration	
		he applied hardware modules	
	1.2 Meeti	ng the device	7
	1.3 Softw	are configuration	8
	1.3.1 F	Protection functions	-
	1.3.1.1	Three-phase instantaneous overcurrent protection function (IOC50)	
	1.3.1.2	Three-phase time overcurrent protection function (TOC51)	
	1.3.1.3	Residual instantaneous overcurrent protection function (IOC50N)	
	1.3.1.4	Residual overcurrent protection function (TOC51N)	
	1.3.1.5	Negative sequence overcurrent protection function (TOC46)	
	1.3.1.6	Line thermal protection function (TTR49L)	
	1.3.1.7	Transformer differential protection function (DIF87_2w)	
	1.3.1.8	Rectricted earth fault protection function (DIF87N)	
	1.3.1.9	Current unbalance function (VCB60)	
	1.3.1.10	Breaker failure protection function (BRF50)	
	1.3.1.11	Trip logic (TRC94)	
	1.3.1.12	Dead line detection function (DLD)	
	1.3.1.13	Current input function (CT4)	
	1.3.1.14	Circuit breaker control function block (CB1Pol)	
2	External c	onnections	40

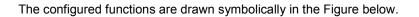
1 Configuration description

The E1-TR protection device is a member of the *EuroProt+* product line, made by Protecta Co. Ltd. The *EuroProt+* type complex protection in respect of hardware and software is a modular device. The modules are assembled and configured according to the requirements, and then the software determines the functions. This manual describes the specific application of the E1-TR factory configuration.

1.1 Application

The members of the DTRV product line are configured to protect and control high voltage/medium voltage transformers.

1.1.1 Protection functions


The E1-TR configuration measures three phase currents and the zero sequence current component from both sides of a two winding, three-phase transformer.

The main protection functions are transformer differential protection and restricted earth-fault protection functions.

The realized current-based protection functions, including thermal replica protection function and differential functions, are listed in the Table below.

Protection functions	IEC	ANSI	E1-TR
Three-phase instantaneous overcurrent protection	>>>	50	X
Three-phase time overcurrent protection	>, >>	51	Х
Residual instantaneous overcurrent protection	lo >>>	50N	X
Residual time overcurrent protection	lo >, lo >>	51N	Х
Negative sequence overcurrent protection	l ₂ >	46	X
Thermal protection	Τ>	49	X
Transformer differential	3I _d T >	87T	2w
Restricted earth fault	REF	87N	Х
Current unbalance protection		60	X
Breaker failure protection	CBFP	50BF	Х

Table 1 The protection functions of the E1-TR configuration

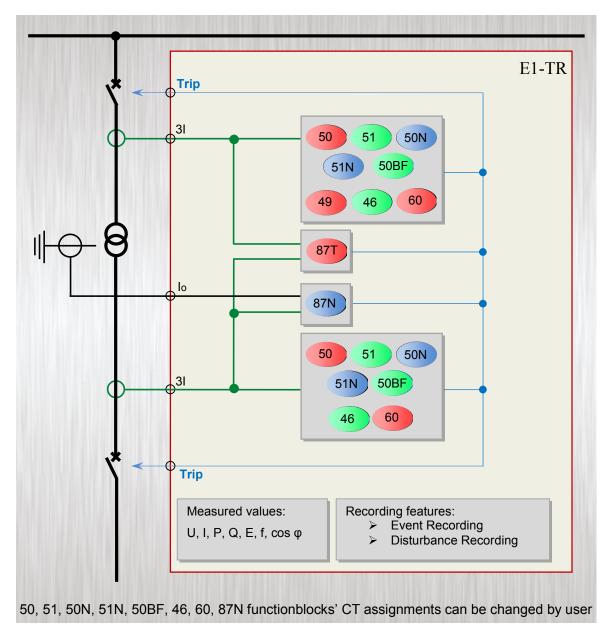


Figure 1 Implemented protection functions

1.1.2 Measurement functions

Based on the hardware inputs the measurements listed in Table below are available.

Measurement functions	E1-TR
Current (I1, I2, I3, Io)	X
Supervised trip contacts (TCS)	X

Table 2 The measurement functions of the E1-TR configuration

1.1.3 Hardware configuration

The minimum number of inputs and outputs are listed in the Table below.

Hardware configuration	ANSI	E1-TR
Mounting		Op.
Panel instrument case		
Current inputs (4th channel can be sensitive)		8
Voltage inputs		-
Digital inputs		12
Digital outputs		8
Fast trip outputs		4
Temperature monitoring (RTDs) *	38 / 49T	Op.

Table 3 The basic hardware configuration of the E1-TR configuration

The basic module arrangement of the E1-TR configuration is shown below.

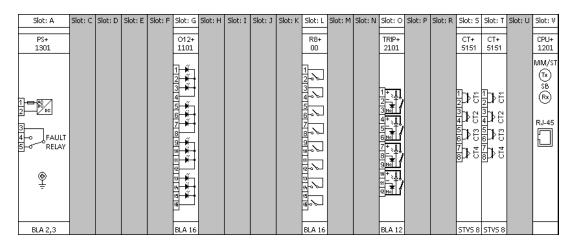


Figure 2 Basic module arrangement of the E1-TR configuration (84TE, rear view)

Slot: A	Slot: B	Slot: C	Slot: D	Slot: E	Slot: F	Slot: G	Slot: H	Slot: I	Slot: J
PS+		012+	R8+	TRIP+			CT+	CT+	CPU+
2101		1101	00	2101			5151	5151	1201
		며 (1) (1) (1) (1) (1) (1) (1) (1					[∞] 시 19 (14 년 17 년	[∞ ⊣ ਗ਼ 에 두 이 ▷ ← ← ← ← ← CT4 CT3 CT2 CT1	55 ≦ (≥) B (23) 45 R (1)
BLA 2,3		BLA 16	BLA 16	BLA 12			STVS 8	STVS 8	

Figure 3 Basic module arrangement of the E1-TR configuration (42TE, rear view)

1.1.4 The applied hardware modules

The applied modules are listed in Table 4.

The technical specification of the device and that of the modules are described in the document "*Hardware description*".

Module identifier	Explanation	
PS+ 1301	Power supply unit (in 84TE)	
PS+ 2101	Power supply unit (in 42TE)	
O12+ 1101	Binary input module	
R8+ 00	Signal relay output module	
TRIP+ 2101	Trip relay output module	
CT + 5151	Analog current input module	
CPU+ 1201	Processing and communication module	

Table 4 The applied modules of the E1-TR configuration

1.2 Meeting the device

The basic information for working with the *EuroProt+* devices are described in the document "*Quick start guide to the devices of the EuroProt+ product line*".

Figure 4 The 84 inch rack of EuroProt+ family

Figure 5 The 42 inch rack of EuroProt+ family

1.3 Software configuration

1.3.1 Protection functions

The implemented protection functions are listed in Table 5. The function blocks are described in details in separate documents. These are referred to also in this table.

Name	Title	Document
IOC50_low	3ph Instant.OC	Three-phase instantaneous overcurrent
IOC50_high		protection function block description
TOC51_low	3ph Overcurr	Three-phase overcurrent protection
TOC51_high		function block description
IOC50N	Residual Instant.OC	Residual instantaneous overcurrent
		protection function block description
TOC51N_low	Residual TOC	Residual overcurrent protection function
TOC51N_high		block description
TOC46	Neg. Seq. OC	Negative sequence overcurrent protection
		function block description
TTR49L	Thermal Overload	Line thermal protection function block
		description
DIF87_2w	Transformer	Transformer differential protection
	Differential	function block description
DIF87N	Restricted EF	Restricted Earth Fault protection function
		block description
VCB60	Current Unbalance	Current unbalance function block
		description
BRF50_low	Breaker failure	Breaker failure protection function block
BRF50_high		description
TRC94_low	Trip Logic	Trip logic function block description
TRC94_high		
CT4		Current input function block description
CB1Pol		Circuit breaker control function block
		descrpition

Table 5 Implemented protection functions

1.3.1.1 Three-phase instantaneous overcurrent protection function (IOC50)

The three-phase instantaneous overcurrent protection function (IOC50) operates immediately if the phase currents are higher than the setting value.

The setting value is a parameter, and it can be doubled by graphic programming of the dedicated input binary signal defined by the user.

The function is based on peak value selection or on the RMS values of the Fourier basic harmonic calculation, according to the parameter setting. The fundamental Fourier components are results of an external function block.

Parameter for type selection has selection range of Off, Peak value and Fundamental value. When Fourier calculation is selected then the accuracy of the operation is high, the operation time however is above one period of the network frequency. If the operation is based on peak values then fast sub-cycle operation can be expected, but the transient overreach can be high.

The function generates trip commands without additional time delay if the detected values are above the current setting value.

The function generates trip commands for the three phases individually and a general trip command as well.

The instantaneous overcurrent protection function has a binary input signal, which serves the purpose of disabling the function. The conditions of disabling are defined by the user, applying the graphic equation editor.

Function		Accuracy				
Using peak value calculation						
Operating characteristic	Instantaneous	<6%				
Reset ratio	0.85					
Operate time at 2*Is	<15 ms					
Reset time *	< 40 ms					
Transient overreach	90 %					
Using Fouri	er basic harmonic calculat	tion				
Operating characteristic	Instantaneous	<2%				
Reset ratio	0.85					
Operate time at 2* Is	<25 ms					
Reset time *	< 60 ms					
Transient overreach	15 %					

Technical data

*Measured with signal contacts

Table 6 Technical data of of the instantaneous overcurrent protection function

Parameters	
Enumerated	noromotor

Enumerated parameter							
Parameter name Title Selection range Default							
Parameter for type selection							
IOC50_Oper_EPar_ Operation Off, Peak value, Fundamental value Peak value							
Table 7 The enumerated parameter of the instantaneous overcurrent protection							

function

integer parameter							
Parameter name	Title	Unit	Min	Max	Step	Default	
Starting current parameter:							
IOC50_StCurr_IPar_ Start Current % 20 3000 1 200							
T 1 0 T 1	6.1					<i>c</i> .	

Table 8 The integer parameter of the instantaneous overcurrent protection function

1.3.1.2 Three-phase time overcurrent protection function (TOC51)

The overcurrent protection function realizes definite time or inverse time characteristics according to IEC or IEEE standards, based on three phase currents. The characteristics are harmonized with IEC 60255-151, Edition 1.0, 2009-08. This function can be applied as main protection for medium-voltage applications or backup or overload protection for high-voltage network elements.

The definite (independent) time characteristic has a fixed time delay when the current is above the starting current I_s previously set as a parameter.

The standard operating characteristics of the inverse time overcurrent protection function are defined by the following formula:

$$t(G) = TMS \left[\frac{k}{\left(\frac{G}{G_s}\right)^{\alpha} - 1} + c \right] \text{ when } G > G_s$$

where t(G)(seconds) k, c α G

Gs

TMS

theoretical operate time with constant value of G, constants characterizing the selected curve (in seconds), constants characterizing the selected curve (no dimension), measured value of the characteristic quantity, Fourier base harmonic of the phase currents (IL1Four, IL2Four, IL3Four), preset value of the characteristic quantity (Start current), preset time multiplier (no dimension).

	IEC ref	Title	k _r	C	α
1	А	IEC Inv	0,14	0	0,02
2	В	IEC VeryInv	13,5	0	1
3	С	IEC ExtInv	80	0	2
4		IEC LongInv	120	0	1
5		ANSI Inv	0,0086	0,0185	0,02
6	D	ANSI ModInv	0,0515	0,1140	0,02
7	E	ANSI VeryInv	19,61	0,491	2
8	F	ANSI ExtInv	28,2	0,1217	2
9		ANSI LongInv	0,086	0,185	0,02
10		ANSI LongVeryInv	28,55	0,712	2
11		ANSI LongExtInv	64,07	0,250	2

The end of the effective range of the dependent time characteristics (G_D) is:

$$G_{\rm D} = 20 * G_{\rm S}$$

Above this value the theoretical operating time is definite: $\hfill \ensuremath{\square}$

$$t(G) = TMS \left| \frac{k}{\left(\frac{G_{\rm D}}{G_{\rm S}}\right)^{\alpha} - 1} + c \right| \text{ when } G > G_{\rm D} = 20 * G_{\rm S}$$

Additionally a minimum time delay can be defined by a dedicated parameter. This delay is valid if it is longer than t(G), defined by the formula above.

Resetting characteristics:

- for IEC type characteristics the resetting is after a fix time delay defined by TOC51_Reset_TPar_ (Reset delay),
- for ANSI types however according to the formula below:

$$t_r(G) = TMS \left[\frac{k_r}{1 - \left(\frac{G}{G_s}\right)^{\alpha}} \right]$$
 when $G < G_s$

where

theoretical reset time with constant value of G.
constants characterizing the selected curve (in seconds),
constants characterizing the selected curve (no dimension),
measured value of the characteristic quantity, Fourier base harmonic
of the phase currents,
preset value of the characteristic quantity (Start current),
preset time multiplier (no dimension).

	IEC ref	Title	k _r	α
1	А	IEC Inv	Resetting after fix t	ime delay,
2	В	IEC VeryInv	according to preset	
3	С	IEC ExtInv	TOC51_Reset_TPa	ar_
4		IEC LongInv	"Reset delay"	
5		ANSI Inv	0,46	2
6	D	ANSI ModInv	4,85	2
7	Е	ANSI VeryInv	21,6	2
8	F	ANSI ExtInv	29,1	2
9		ANSI LongInv	4,6	2
10		ANSI LongVeryInv	13,46	2
11		ANSI LongExtInv	30	2

The binary output status signals of the three-phase overcurrent protection function are starting signals of the three phases individually, a general starting signal and a general trip command.

The overcurrent protection function has a binary input signal, which serves the purpose of disabling the function. The conditions of disabling are defined by the user, applying the graphic equation editor.

Function	Value	Accuracy
Operating accuracy	$20 \le G_S \le 1000$	< 2 %
Operate time accuracy		±5% or ±15 ms, whichever is greater
Reset ratio	0,95	
Reset time * Dependent time char. Definite time char.	Approx 60 ms	< 2% or ±35 ms, whichever is greater
Transient overreach		< 2 %
Pickup time *	< 40 ms	
Overshot time Dependent time char. Definite time char.	30 ms 50 ms	
Influence of time varying value of the input current (IEC 60255-151)		< 4 %

* Measured with signal relay contact

Table 9 Technical data of of the instantaneous overcurrent protection function

Parameters

r alameters								
Enumerated parameters								
Parameter name	Title	Selection range	Default					
Parameter for type selection								
TOC51_Oper_EPar_	Operation	Off, DefinitTime, IEC Inv, IEC VeryInv, IEC ExtInv, IEC LongInv, ANSI Inv, ANSI ModInv, ANSI VeryInv, ANSI ExtInv, ANSI LongInv, ANSI LongVeryInv, ANSI LongExtInv	Definit Time					
	. 1							

Table 10 The enumerated parameters of the time overcurrent protection function

Integer parameter

Parameter name	Title	Unit	Min	Max	Step	Default
Starting current parameter:						
TOC51_StCurr_IPar_	Start Current	%	20	1000	1	200

Table 11 The integer parameter of the time overcurrent protection function

Float point parameter

Parameter name	Title	Unit	Min	Max	Step	Default
Time multiplier of the inverse characteristics (OC module)						
TOC67_Multip_FPar_	Time Multiplier	sec	0.05	999	0.01	1.0

Table 12 The float point parameter of the time overcurrent protection function

Timer parameters						
Parameter name	Title	Unit	Min	Max	Step	Default
Minimal time delay for the inverse characteristics:						
TOC51_MinDel_TPar_	Min Time Delay *	msec	0	60000	1	100
Definite time delay:						
TOC51 DefDel TPar Definite Time Delay ** msec 0 60000 1 100						100
Reset time delay for the inverse characteristics:						
TOC51_Reset_TPar_	Reset Time*	msec	0	60000	1	100
*Valid for inverse type ch	aractoristics					

*Valid for inverse type characteristics

**Valid for definite type characteristics only

Table 13 The timer parameters of the time overcurrent protection function

1.3.1.3 Residual instantaneous overcurrent protection function (IOC50N)

The residual instantaneous overcurrent protection function (IOC50N) block operates immediately if the residual current (3lo) is above the setting value. The setting value is a parameter, and it can be doubled by a dedicated binary input signal defined by the user applying the graphic programming.

The function is based on peak value selection or on the RMS values of the Fourier basic harmonic component of the residual current, according to the parameter setting. The fundamental Fourier component calculation is not part of the IOC50N function.

Parameter for type selection has selection range of Off, Peak value and Fundamental value.

The function generates a trip commands without additional time delay if the detected values are above the current setting value.

The residual instantaneous overcurrent protection function has a binary input signal, which serves the purpose of disabling the function. The conditions of disabling are defined by the user, applying the graphic equation editor.

Function		Accuracy
Using	peak value calculation	
Operating characteristic (I>0.1 In)	Instantaneous	<6%
Reset ratio	0.85	
Operate time at 2*Is	<15 ms	
Reset time *	< 35 ms	
Transient overreach	85 %	
Using Fourie	er basic harmonic calculati	ion
Operating characteristic (I>0.1 In)	Instantaneous	<3%
Reset ratio	0.85	
Operate time at 2*Is	<25 ms	
Reset time *	< 60 ms	
Transient overreach	15 %	

Technical data

*Measured with signal contacts

Table 14 Technical data of the residual instantaneous overcurrent protection function

Parameters

Enumerated parameter								
Parameter name	Title	Selection range	Default					
Parameter for type selection								
IOC50N Oper EPar	Operation	Off, Peak value, Fundamental value	Peak value					

Table 15 The enumerated parameter of the residual instantaneous overcurrentprotection function

Integer parameter

Parameter name	Title	Unit	Min	Max	Step	Default
Starting current parameter:						
IOC50N_StCurr_IPar_	Start Current	%	10	400	1	200

 Table 16 The integer parameter of the residual instantaneous overcurrent protection

 function

1.3.1.4 Residual overcurrent protection function (TOC51N)

The residual delayed overcurrent protection function can realize definite time or inverse time characteristics according to IEC or IEEE standards, based on the RMS value of the fundamental Fourier component of a single measured current, which can be the measured residual current at the neutral point (3lo) or the calculated zero sequence current component. The characteristics are harmonized with IEC 60255-151, Edition 1.0, 2009-08.

The definite (independent) time characteristic has a fixed time delay when the current is above the starting current Is previously set as a parameter.

The standard operating characteristics of the inverse time overcurrent protection function are defined by the following formula:

$$t(G) = TMS \left[\frac{k}{\left(\frac{G}{G_s}\right)^{\alpha} - 1} + c \right] \text{ when } G > G_s$$

where

t(G)(seconds) theoretical operate time with constant value of G, constants characterizing the selected curve (in seconds), k, c constant characterizing the selected curve (no dimension), measured value of the characteristic quantity, Fourier base harmonic of the residual current (INFour), preset value of the characteristic quantity (Start current),

Gs TMS

α G

preset time multiplier (no dimension).

	IEC ref		k _r	с	α
1	Α	IEC Inv	0,14	0	0,02
2	В	IEC VeryInv	13,5	0	1
3	С	IEC ExtInv	80	0	2
4		IEC LongInv	120	0	1
5		ANSI Inv	0,0086	0,0185	0,02
6	D	ANSI ModInv	0,0515	0,1140	0,02
7	Е	ANSI VeryInv	19,61	0,491	2
8	F	ANSI ExtInv	28,2	0,1217	2
9		ANSI LongInv	0,086	0,185	0,02
10		ANSI LongVeryInv	28,55	0,712	2
11		ANSI LongExtInv	64,07	0,250	2

The end of the effective range of the dependent time characteristics (G_D) is:

$$G_{\rm D} = 20 * G_{\rm S}$$

Above this value the theoretical operating time is definite:

$$t(G) = TMS \left[\frac{k}{\left(\frac{G_{\rm D}}{G_{\rm S}}\right)^{\alpha} - 1} + c \right] \text{ when } G > G_{\rm D} = 20 * G_{\rm S}$$

Additionally a minimum time delay can be defined by a dedicated parameter (Min. Time Delay). This delay is valid if it is longer than t(G), defined by the formula above.

Resetting characteristics:

- for IEC type characteristics the resetting is after a fix time delay, •
- for ANSI types however according to the formula below:

$$t_r(G) = TMS \left[\frac{k_r}{1 - \left(\frac{G}{G_s} \right)^{\alpha}} \right]$$
 when $G < G_s$

 where

 tr(G)(seconds)
 theoretical reset time with constant value of G,

 kr
 constants characterizing the selected curve (in seconds),

 α
 constant characterizing the selected curve (no dimension),

 G
 measured value of the characteristic quantity, Fourier base harmonic of the residual current,

 Gs
 preset value of the characteristic quantity (Start current),

 TMS
 preset time multiplier (no dimension).

IEC **k**_r α ref IEC Inv 1 А Resetting after fix time delay, 2 В IEC VeryInv according to preset parameter TOC51_Reset_TPar_ 3 С IEC ExtInv "Reset delay" 4 IEC LongInv ANSI Inv 0,46 2 5 6 D ANSI ModInv 2 4,85 2 7 ANSI VeryInv 21,6 Е 8 F ANSI ExtInv 29.1 2 2 9 ANSI LongInv 4,6 ANSI LongVeryInv 10 2 13,46 ANSI LongExtInv 2 11 30

The binary output status signals of the residual overcurrent protection function are the general starting signal and the general trip command if the time delay determined by the characteristics expired.

The residual overcurrent protection function has a binary input signal, which serves the purpose of disabling the function. The conditions of disabling are defined by the user, applying the graphic equation editor.

Function	Value	Accuracy
Operating accuracy *	20 ≤ G _S ≤ 1000	< 3 %
Operate time accuracy		±5% or ±15 ms, whichever is greater
Reset ratio	0,95	
Reset time * Dependent time char. Definite time char.	Approx 60 ms	< 2% or ±35 ms, whichever is greater
Transient overreach		2 %
Pickup time	≤ 40 ms	
Overshot time		
Dependent time char.	30 ms	
Definite time char.	50 ms	
Influence of time varying value of the input current (IEC 60255-151)		< 4 %

* Measured in version In = 200 mA

Table 17 The technical data of the residual overcurrent protection function

Technical data

Parameters Enumerated parameter	rs		
Parameter name	Title	Selection range	Default
Parameter for type select	ction		
TOC51N_Oper_EPar_	Operation	Off, DefinitTime, IEC Inv, IEC VeryInv, IEC ExtInv, IEC LongInv, ANSI Inv, ANSI ModInv, ANSI VeryInv, ANSI ExtInv, ANSI LongInv, ANSI LongVeryInv, ANSI LongExtInv	Definite Time

Table 18 The enumerated parameters of the residual overcurrent protection function

Integer parameter Parameter name	Title	Unit	Min	Max	Step	Default
Starting current parameter	•					1
TOC51N_StCurr_IPar_	Start Current *	%	5	200	1	50
TOC51N_StCurr_IPar_	Start Current **	%	10	1000	1	50
* 10-110-51						

** In = 200 mA or 1 A

Table 19 The integer parameter of the residual overcurrent protection function

Float point parameter

Parameter name	Title	Unit	Min	Max	Step	Default
Time multiplier of the inverse characteristics (OC module)						
TOC51N_Multip_FPar_	Time Multiplier	sec	0.05	999	0.01	1.0

Table 20 The float parameter of the residual overcurrent protection function

Timer parameters						
Parameter name	Title	Unit	Min	Max	Step	Default
Minimal time delay for the i	nverse characteristics	:				
TOC51N_MinDel_TPar_	Min Time Delay*	msec	0	60000	1	100
Definite time delay:						
TOC51N_DefDel_TPar_	Definite Time Delay**	msec	0	60000	1	100
Reset time delay for the inv	verse characteristics:					
TOC51N_Reset_TPar_	Reset Time*	msec	0	60000	1	100
* I/ 1: .1 f :	1					

**Valid for inverse type characteristics*

***Valid for definite type characteristics only*

Table 21 The timer parameters of the residual overcurrent protection function

1.3.1.5 Negative sequence overcurrent protection function (TOC46)

The negative sequence overcurrent protection function (TOC46) block operates if the negative sequence current is higher than the preset starting value.

In the negative sequence overcurrent protection function, definite-time or inverse-time characteristics are implemented, according to IEC or IEEE standards. The function evaluates a single measured current, which is the RMS value of the fundamental Fourier component of the negative sequence current. The characteristics are harmonized with IEC 60255-151, Edition 1.0, 2009-08.

The definite (independent) time characteristic has a fixed delaying time when the current is above the starting current G_s previously set as a parameter.

The standard dependent time characteristics of the negative sequence overcurrent protection function are as follows.

$$t(G) = TMS \left[\frac{k}{\left(\frac{G}{G_s}\right)^{\alpha} - 1} + c \right] \text{ when } G > G_s$$

where t(G)(seconds) k, c α G G_S

TMS

theoretical operate time with constant value of G, constants characterizing the selected curve (in seconds), constant characterizing the selected curve (no dimension), measured value of the characteristic quantity, Fourier base harmonic of the negative sequence current (INFour), preset starting value of the characteristic quantity, preset time multiplier (no dimension).

	IEC ref		k _r	с	α
1	А	IEC Inv	0,14	0	0,02
2	В	IEC VeryInv	13,5	0	1
3	С	IEC ExtInv	80	0	2
4		IEC LongInv	120	0	1
5		ANSI Inv	0,0086	0,0185	0,02
6	D	ANSI ModInv	0,0515	0,1140	0,02
7	E	ANSI VeryInv	19,61	0,491	2
8	F	ANSI ExtInv	28,2	0,1217	2
9		ANSI LongInv	0,086	0,185	0,02
10		ANSI LongVeryInv	28,55	0,712	2
11		ANSI LongExtInv	64,07	0,250	2

Table 22 The constants of the standard dependent time characteristics

A parameter (Operation) serves for choosing overcurrent function of independent time delay or dependent one with type selection above.

Time multiplier of the inverse characteristics (TMS) is also a parameter to be preset.

The end of the effective range of the dependent time characteristics (G_D) is:

$$G_{\rm D} = 20 * G_{\rm S}$$

Above this value the theoretical operating time is definite. The inverse type characteristics are also combined with a minimum time delay, the value of which is set by user parameter TOC46_MinDel_TPar_ (Min. Time Delay).

The negative phase sequence components calculation is based on the Fourier components of the phase currents.

The binary output status signals of the negative sequence overcurrent protection function are the general starting and the general trip command of the function.

The negative sequence overcurrent protection function has a binary input signal, which serves the purpose of disabling the function. The conditions of disabling are defined by the user, applying the graphic equation editor.

Technical data

Function	Value	Accuracy
Operating accuracy	10 ≤ G _s [%] ≤ 200	< 2 %
Operate time accuracy		±5% or ±15 ms, whichever is greater
Reset ratio	0,95	
Reset time * Dependent time charact. Definite time charact.	approx. 60 ms	<2 % or ±35 ms, whichever is greater
Transient overreach		< 2 %
Pickup time at 2* G _s	<40 ms	
Overshot time Dependent time charact. Definite time charact.	25 ms 45 ms	
Influence of time varying value of the input current (IEC 60255-151)		< 4 %

Measured with signal contacts

Table 23 Technical data of the negative sequence overcurrent protection function

Parameters

Enumerated parameter Parameter name Title Selection range Default Parameter for type selection Off, DefinitTime, IEC Inv, IEC VeryInv, IEC ExtInv, IEC LongInv, ANSI Inv, ANSI ModInv, ANSI VeryInv, ANSI ExtInv, ANSI LongInv, ANSI LongVeryInv, ANSI LongExtInv Definit Time

Table 24 The enumerated parameter of the negative sequence overcurrent protectionfunction

Integer parameter						
Parameter name	Title	Unit	Min	Max	Step	Default
Starting current parameter:						
TOC46_StCurr_IPar_	Start Current	%	5	200	1	50

 Table 25 The integer parameter of the negative sequence overcurrent protection

 function

Timer parameters						
Parameter name	Title	Unit	Min	Max	Step	Default
Minimal time delay for the ir	verse characteristics:					
TOC46_MinDel_TPar_	Min Time Delay*	msec	0	60000	1	100
Definite time delay:						
TOC46_DefDel_TPar_	Definite Time Delay**	msec	0	60000	1	100
Reset time delay for the inve	erse characteristics:					
TOC46_Reset_TPar_	Reset Time*	msec	0	60000	1	100
Time multiplier for the inverse characteristics:						
TOC46_Multip_TPar_	Time Multiplier*	msec	100	60000	1	100

*Valid for inverse type characteristics

**Valid for definite type characteristics only

 Table 26 The timer parameter of the negative sequence overcurrent protection

 function

1.3.1.6 Line thermal protection function (TTR49L)

Basically, line thermal protection measures the three sampled phase currents. RMS values are calculated and the temperature calculation is based on the highest RMS value of the phase currents.

The temperature calculation is based on the step-by-step solution of the thermal differential equation. This method yields "overtemperature", meaning the temperature above the ambient temperature. Accordingly, the temperature of the protected object is the sum of the calculated "overtemperature" and the ambient temperature.

If the calculated temperature (calculated "overtemperature"+ambient temperature) is above the threshold values, alarm, trip and restart blocking status signals are generated.

For correct setting, the following values must be measured and set as parameters: rated load current is the continuous current applied for the measurement, rated temperature is the steady state temperature at rated load current, base temperature is the temperature of the environment during the measurement and the time constant is the measured heating/cooling time constant of the exponential temperature function.

When energizing the protection device, the algorithm permits the definition of the starting temperature as the initial value of the calculated temperature. The parameter Startup Term. is the initial temperature above the temperature of the environment as compared to the rated temperature above the temperature of the environment

The ambient temperature can be measured using e.g. a temperature probe generating electric analog signals proportional to the temperature. In the absence of such measurement, the temperature of the environment can be set using the dedicated parameter TTR49L_Amb_IPar_ (Ambient Temperature). The selection between parameter value and direct measurement is made by setting the binary Boolean parameter.

The problem of metal elements (the protected line) exposed to the sun is that they are overheated as compared to the "ambient" temperature even without a heating current; furthermore, they are cooled mostly by the wind and the heat transfer coefficient is highly dependent on the effects of the wind. As the overhead lines are located in different geographical environments along the tens of kilometers of the route, the effects of the sun and the wind cannot be considered in detail. The best approximation is to measure the temperature of a piece of overhead line without current but exposed to the same environmental conditions as the protected line itself.

The application of thermal protection of the overhead line is a better solution than a simple overcurrent-based overload protection because thermal protection "remembers" the preceding load states of the line and the setting of the thermal protection does not need so a high security margin between the permitted current and the permitted continuous thermal current of the line. In a broad range of load states and in a broad range of ambient temperatures this permits the better exploitation of the thermal and consequently current carrying capacity of the line.

The thermal differential equation to be solved is:

 $\frac{d\Theta}{dt} = \frac{1}{T} \left(\frac{I^2(t)R}{hA} - \Theta \right), \text{ and the definition of the heat time constant is: } T = \frac{cm}{hA}$

In this differential equation:

- I(t) (RMS) heating current, the RMS value usually changes over time;
- R resistance of the line;
- c specific heat capacity of the conductor;
- m mass of the conductor;
- θ rise of the temperature above the temperature of the environment;
- h heat transfer coefficient of the surface of the conductor;
- A area of the surface of the conductor;
- t time.

The solution of the thermal differential equation for constant current is the temperature as the function of time (the mathematical derivation of this equation is described in a separate document):

$$\Theta(t) = \frac{I^2 R}{hA} \left(1 - e^{-\frac{t}{T}} \right) + \Theta_o e^{-\frac{t}{T}}$$

where

 Θ_{o} is the starting temperature.

Remember that the calculation of the measurable temperature is as follows:

Temperature(t) = $\Theta(t)$ +Temp_ambient

where Temp ambient

is the ambient temperature.

In a separate document it is proven that some more easily measurable parameters can be introduced instead of the aforementioned ones. Thus, the general form of equation above is:

$$H(t) = \frac{\Theta(t)}{\Theta_n} = \frac{I^2}{I_n^2} \left(1 - e^{-\frac{t}{T}}\right) + \frac{\Theta_o}{\Theta_n} e^{-\frac{t}{T}}$$

where:

H(t) is the "thermal level" of the heated object, this is the temperature as a percentage of the Θ_n reference temperature. (This is a dimensionless quantity but it can also be expressed in a percentage form.)

- Θ_n is the reference temperature above the temperature of the environment, which can be measured in steady state, in case of a continuous I_n reference current.
- In is the reference current (can be considered as the nominal current of the heated object). If it flows continuously, then the reference temperature can be measured in steady state.

 $\frac{\Theta_o}{\Theta_n}$ is a parameter of the starting temperature related to the reference temperature

The *RMS calculations modul* calculate the RMS values of the phase currents individually. The sampling frequency of the calculations is 1 kHz; therefore, theoretically, the frequency components below 500Hz are considered correctly in the RMS values. This module is not part of the thermal overload function; it belongs to the preparatory phase.

The Max selection module selects the maximal value of the three RMS phase currents.

The *Thermal replica module* solves the first order thermal differential equation using a simple step-by-step method and compares the calculated temperature to the values set by parameters. The temperature sensor value proportional to the ambient temperature can be an input (this signal is optional, defined at parameter setting).

The function can be disblaed by parameter, or generates a trip pulse if the calculated temperature exceeds the trip value, or generates a trip signal if the calculated temperature exceeds the trip value given by a parameter but it resets only if the temperature cools below the "Unlock temperature".

The line thermal protection function has two binary input signals. The conditions of the input signal are defined by the user, applying the graphic equation editor. One of the signals can block the line thermal protection function, the other one can reset the accumulated heat and set the temperature to the defined value for the subsequent heating test procedure.

Technical data	
Function	Accuracy
Operate time at I>1.2*Itrip	<3 % or < <u>+</u> 20 ms

Table 27 Technical data of the line thermal protection function

Parameters

Enumerated parameter			
Parameter name	Title	Selection range	Default
Parameter for mode of operation			
TTR49L_Oper_EPar_	Operation	Off, Pulsed, Locked	Pulsed

Table 28 The enumerated parameter of the line thermal protection function

The meaning of the enumerated values is as follows:

temperature".

Off	the function is switched off; no output status signals are generated;
Pulsed	the function generates a trip pulse if the calculated temperature exceeds the
	trip value
Locked	the function generates a trip signal if the calculated temperature exceeds the
	trip value. It resets only if the temperature cools below the "Unlock

Integer parameters

Parameter name	Title	Unit	Min	Max	Step	Default
Alarm Temperature						
TTR49L_Alm_IPar_	Alarm Temperature	deg	60	200	1	80
Trip Temperature						
TTR49L_Trip_IPar_	Trip Temperature	deg	60	200	1	100
Rated Temperature						
TTR49L_Max_IPar_	Rated Temperature	deg	60	200	1	100
Base Temperature						
TTR49L_Ref_IPar_	Base Temperature	deg	0	40	1	25
Unlock Temperature						
TTR49L_Unl_IPar_	Unlock Temperature	deg	20	200	1	60
Ambient Temperature						
TTR49L_Amb_IPar_	Ambient Temperature	deg	0	40	1	25
Startup Term.						
TTR49L_Str_IPar	Startup Term	%	0	60	1	0
Rated Load Current						
TTR49L_Inom_IPar_	Rated Load Current	%	20	150	1	100
Time constant						
TTR49L_pT_IPar_	Time Constant	min	1	999	1	10

Table 29 The integer parameters of the line thermal protection function

Boolean parameter					
Boolean parameter	Signal title	Selection range	Default		
Parameter for ambient temperature sensor application					
TTR49L_Sens_BPar_	Temperature Sensor	No, Yes	No		

Table 30 The boolean parameter of the line thermal protection function

1.3.1.7 Transformer differential protection function (DIF87_2w)

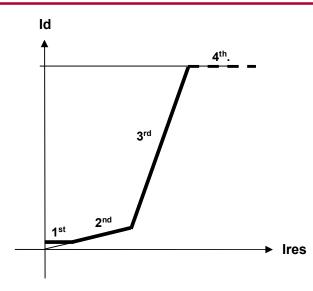
The differential protection function provides main protection for transformers, generators or large motors, but it can also be applied for overhead lines and cables of solidly grounded networks or for the protection of any combination of the aforementioned objects.

Version DIF87_3w can be applied to protect three-winding transformers. The simpler version DIF87_2w does not process analogue inputs from the tertiary side.

The three-phase power transformers transform the primary current to the secondary side according to the turns ratio and the vector group of the transformers. The Y (star), D (delta) or Z (zig-zag) connection of the three phase coils on the primary and secondary sides causes the vector shift of the currents. The numerical differential protection function applies matrix transformation of the directly measured currents of one side of the transformer to match them with the currents of the other side.

In Protecta's transformer differential protection the target of the matrix transformation is the delta (D) side. Thus the problem of zero sequence current elimination in case of an external ground fault is also solved.

The method of the matrix transformation is defined by the "Code" parameter identifying the transformer vector group connection.


The differential current can be high during the transients of transformer energizing (inrush current) due to the current distortion caused by the transformer iron core asymmetrical saturation. In this case, the second harmonic content of the differential current is applied to disable the false operation of the differential protection function.

The differential current can be high in case of the over-excitation of the transformer due to the current distortion caused by the transformer iron core symmetrical saturation. In this case, the fifth harmonic content of the differential current is applied to disable the false operation of the differential protection function.

The harmonic analysis calculates the basic Fourier components of the three differential currents. These results are needed for the high-speed differential current decision and for the second and fifth harmonic restraint calculation.

The software modules evaluate and compare the result with the parameter values set for the second and fifth harmonic. If the harmonic content relative to the basic harmonic component of the differential currents is high, a restraint signal is generated immediately and a timer is started at the same time. If the duration of the active status is at least 25 ms, then the resetting of the restraint signal is delayed by an additional 15 ms.

The decision logic module decides if the differential current of the individual phases is above the characteristic curve of the differential protection function. It compares the magnitudes of the differential currents and those of the restraint currents for evaluation of the "percentage differential characteristics". This curve is the function of the restraint current, which is calculated based on the sum of the magnitude of the phase-shifted phase currents (see Figure below).

The characteristic curve has four sections. The first section is the base sensitivity, the second one serves to compensate the turns ratio deviation e.g. due to the operation of the on-load tap changer, the third is to eliminate false operation caused by the CT saturation and the fourth one is the unrestricted differential function. The slope of the third section is constant, it is 2.

The differential protection function has a binary input signal, which serves the purpose of disabling the function. The conditions of disabling are defined by the user applying the graphic equation editor.

Weasured values		
Measured value	Dim.	Explanation
ldiff. L1	In %	The calculated differential current in phase L1 (after vector group compensation)
ldiff. L2	In %	The calculated differential current in phase L2 (after vector group compensation)
ldiff. L3	In %	The calculated differential current in phase L3 (after vector group compensation)
Ibias L1	In %	The calculated restraint current in phase L1 (after vector group compensation)
Ibias L2	In %	The calculated restraint current in phase L2 (after vector group compensation)
Ibias L3	In %	The calculated restraint current in phase L3 (after vector group compensation)

Measured values

Remark: The evaluated basic harmonic values of the measured input phase currents (without vector group compensation) help the commissioning of the differential protection function. These evaluations however are performed by an independent software measuring module, so this chapter excludes the description of these measurements.

Table 31 The measure values of the transformer differential protection function

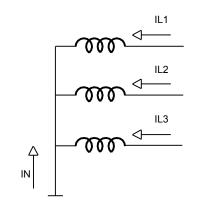
Enumerated parameters				
Parameter name	Title	Selection range	Default	
Parameter to enable the differential protection function:				
DIF87_Op_EPar_	Operation	Off, On	On	
Parameter to select conne	ction group of	the transformer coils in primary-secondary rela	tion:	
DIF87_VGrSec_EPar_	Pri-Sec VGroup*	Dy1,Dy5,Dy7,Dy11,Dd0,Dd6,Dz0,Dz2,Dz4, Dz6,Dz8,Dz10,Yy0,Yy6,Yd1,Yd5,Yd7,Yd11, Yz1,Yz5,Yz7,Yz11	Dd0	
Parameter to select conne	Parameter to select connection group of the transformer coils in primary-tertiary relation:			
DIF87_VGrTer_EPar_	Pri-Ter VGroup*	Dy1,Dy5,Dy7,Dy11,Dd0,Dd6,Dz0,Dz2,Dz4, Dz6,Dz8,Dz10,Yy0,Yy6,Yd1,Yd5,Yd7,Yd11, Yz1,Yz5,Yz7,Yz11	Dd0	

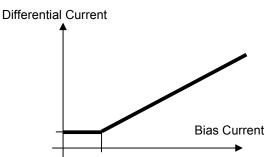
* If the connection of the primary winding in primary-secondary and primary tertiary relation is selected in contradiction then the protection function is automatically disabled, and the function generates a warning signal.

Table 32 The enumerated parameters of the transformer differential protection function

Boolean	parameter
---------	-----------

Parameter name	Title	Default	Explanation
DIF87_0Seq_BPar_	Zero Seq Elimination	True	See Chapter Hiba! A hivatkozási
			forrás nem található.

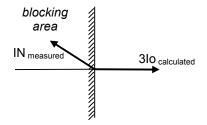

Integer parameters							
Parameter name	Title	Unit	Min	Max	Step	Default	
Parameters for the curren	Parameters for the current magnitude compensation:						
DIF87_TRPr_IPar_	TR Primary Comp	%	20	500	1	100	
DIF87_TRSec_IPar_	TR Secondary Comp	%	20	500	1	100	
DIF87_TRTer_IPar_	TR Tertiary Comp	%	20	200	1	100	
Parameter of the second I	narmonic restraint:						
DIF87_2HRat_IPar_	DIF87_2HRat_IPar_ 2nd Harm Ratio % 5 50 1 15						
Parameter of the fifth harmonic restraint:							
DIF87_5HRat_IPar_	5th Harm Ratio % 5 50 1 25						
Parameters of the percentage characteristic curve:							
Base sensitivity:							
DIF87_f1_IPar_ Base Sensitivity % 10 50 1 20						20	
Slope of the second section	on of the characteristics:						
DIF87_f2_IPar_	1st Slope	%	10	50	1	20	
Bias limit of the first slope:							
DIF87_f3_IPar_	1st Slope Bias Limit	%	200	2000	1	200	
Unrestrained differential p	rotection current level:						
DIF87_HCurr_IPar_	F87_HCurr_IPar_ UnRst Diff Current % 800 2500 1 800						


Table 34 The integer parameters of the transformer differential protection function

Function	Value	Accuracy
Operating characteristic	2 breakpoints	
Reset ratio	0,95	
Characteristic accuracy		<2%
Operate time, unrestrained	Typically 20 ms	
Reset time, unrestrained	Typically 25 ms	
Operate time, restrained	Typically 30 ms	
Reset time, restrained	Typically 25 ms	

Table 35 The functions of the transformer differential protection function

1.3.1.8 Rectricted earth fault protection function (DIF87N)


The restricted earth-fault protection function is basically a low-impedance differential protection function based on zero sequence current components. It can be applied to protect one side winding of transformers with grounded neutral against single-phase-to-earth fault (see Figure). The function compares the measured neutral current at the star point (IN) and the calculated zero sequence current component of the phase currents (IL1, IL2, IL3) and generates a trip command if the difference of these currents is above the characteristics.

The function performs the necessary calculations for the evaluation of the "percentage differential characteristics", and decides to trip if the differential current is above the characteristic curve of the zero sequence differential protection function. This curve is the function of the restraint (Bias) current, which is the maximum of the phase currents and the current of the neutral point.

Differential Current = IL1Four + IL2Four + IL3Four + INFour Bias Current = MAX(IL1Four, IL2Four, IL3Four, INFour)

Note: Four = Fourier

Additionally the function compares the direction of the neutral current and that of the calculated zero sequence current. In case of small zero sequence component of the high fault currents in the phases, this decision improves the stability of the function.

In this system, if the angle between the calculated zero sequence current 3lo and the measured neutral current IN is out of the range of ± 90 degrees, then the restricted earth fault protection can be blocked (see the Figure). For the directional decision, the positive directions are drawn in Figure above. The output signal of the directional decision module can block the restricted earth-fault protection function.

A Boolean parameter of the restricted earth-fault protection function serves to enable the directional checking of the measured and calculated zero sequence currents.

The restricted earth-fault protection function generates a trip signal if the differential current as the function of the bias current is above the differential characteristic lines and the function is not blocked by the directional decision. Additionally the operation of the function is enabled by parameter setting. The conditions of enabling are defined by the user applying the graphic equation editor.

Function	Value	Accuracy
Operating characteristic	1 breakpoint	
Reset ratio	0,95	
Characteristic accuracy		<2%
Operate time, restrained	typically 20 ms	
Reset time, restrained	typically 25 ms	

Table 36 The technical data of the restricted earth fault protection function

Parameters

Enumerated	parameter

Parameter name Title Selection range Default					
Parameter to enable the zero sequence differential protection function:					
DIF87N_Oper_EPar_ Operation Off, On On					

Table 37 The enumerated parameter of the restricted earth fault protection function

Boolean parameter

Parameter name	Title	Default	Explanation
DIF87N_DirCheck_BPar_	Directional check	True	Enabling the directional checking of the measured and calculated zero sequence currents

Table 38 The boolean parameter of the restricted earth fault protection function

Integer parameters						
Parameter name	Title	Unit	Min	Max	Step	Default
Parameters for the current	magnitude compensatio	n:				
DIF87N_TRPri_IPar_	Io Primary Match	%	20	500	1	100
DIF87N_TRNeut_IPar_	Neutral Match	%	100	1000	1	500
Base sensitivity:						
DIF87N_f1_IPar_	Base Sensitivity	%	10	50	1	30
Slope of the second sectio	n of the characteristics:					
DIF87N_f2_IPar_	Slope	%	50	100	1	70
Break point of the characteristic line:						
DIF87N_f2Brk_IPar_	Base Sens Bias Limit	%	100	200	1	125

Table 39 The integer parameters of the restricted earth fault protection function

1.3.1.9 Current unbalance function (VCB60)

The current unbalance protection function (VCB60) can be applied to detect unexpected asymmetry in current measurement.

The applied method selects maximum and minimum phase currents (RMS value of the fundamental Fourier components). If the difference between them is above the setting limit, the function generates a start signal. It is a necessary precondition of start signal generation that the maximum of the currents be above 10 % of the rated current and below 150% of the rated current.

The Fourier calculation modules calculate the RMS value of the basic Fourier current components of the phase currents individually. They are not part of the VCB60 function; they belong to the preparatory phase.

The analog signal processing module processes the RMS value of the basic Fourier current components of the phase currents to prepare the signals for the decision. It calculates the maximum and the minimum value of the RMS values and the difference between the maximum and minimum of the RMS values of the fundamental Fourier components of the phase currents as a percentage of the maximum of these values (ΔI >). If the maximum of the currents is above 10 % of the rated current and below 150% of the rated current and the ΔI > value is above the limit defined by the preset parameter (Start Current Diff) an output is generated to the decision module.

The decision logic module combines the status signals to generate the starting signal and the trip command of the function.

The trip command is generated after the defined time delay if trip command is enabled by the Boolean parameter setting.

The function can be disabled by parameter setting, and by an input signal programmed by the user with the graphic programming tool.

Technical data			
Function	Value	Accuracy	
Pick-up starting accuracy at In		< 2 %	
Reset ratio	0.95		
Operate time	70 ms		

Technical data

Table 40 Technical data of the current unbalance function

Parameters

Enumerated parameter				
Parameter name	Title	Selection range	Default	
Selection of the operating mode				
VCB60_Oper_EPar_	Operation	Off, On	On	

Table 41 The enumerated parameter of the current unbalance function

Boolean parameter

Parameter name	Title	Explanation	Default
Selection for trip comma	nd		
VCB60_StOnly_BPar_	Start Signal Only	0 to generate trip command	0

Table 42 The boolean parameter of the current unbalance function

E1-TR configuration description

Integer parameter						
Parameter name	Title	Unit	Min	Max	Step	Default
Phase difference current setting						
VCB60_StCurr_IPar_	Start Current Diff	%	10	90	1	50

Table 43 The integer parameter of the current unbalance function

Default

1000

Timer parameter					
Parameter name	Title	Unit	Min	Max	Step
Time delay					
VCB60_Del_TPar_	Time Delay	msec	100	60000	100

Table 44 The timer parameter of the current unbalance function

1.3.1.10 Breaker failure protection function (BRF50)

After a protection function generates a trip command, it is expected that the circuit breaker opens and the fault current drops below the pre-defined normal level.

If not, then an additional trip command must be generated for all backup circuit breakers to clear the fault. At the same time, if required, a repeated trip command can be generated to the circuit breakers which are a priori expected to open.

The breaker failure protection function can be applied to perform this task.

The starting signal of the breaker failure protection function is usually the trip command of any other protection function assigned to the protected object. The user has the task to define these starting signals using the graphic equation editor, or if the operation of the individual phases is needed, then the start signals for the phases individually.

Two dedicated timers start at the rising edge of the start signals at the same time, one for the backup trip command and one for the repeated trip command, separately for operation in the individual phases. During the running time of the timers the function optionally monitors the currents, the closed state of the circuit breakers or both, according to the user's choice. The selection is made using an enumerated parameter.

If current supervision is selected by the user then the current limit values must be set correctly. The binary inputs indicating the status of the circuit breaker poles have no meaning.

If contact supervision is selected by the user then the current limit values have no meaning. The binary inputs indicating the status of the circuit breaker poles must be programmed correctly using the graphic equation editor.

If the parameter selection is "Current/Contact", the current parameters and the status signals must be set correctly. The breaker failure protection function resets only if all conditions for faultless state are fulfilled.

If at the end of the running time of the backup timer the currents do not drop below the predefined level, and/or the monitored circuit breaker is still in closed position, then a backup trip command is generated.

If repeated trip command is to be generated for the circuit breakers that are expected to open, then the enumerated parameter Retrip must be set to "On". In this case, at the end of the retrip timer(s) a repeated trip command is also generated in the phase(s) where the retrip timer(s) run off.

The pulse duration of the trip command is not shorter than the time defined by setting the parameter Pulse length.

The breaker failure protection function can be disabled by setting the enabling parameter to "Off".

Dynamic blocking (inhibition) is possible using the binary input Block. The conditions are to be programmed by the user, using the graphic equation editor.

Toomnour auta			
Function	Effective range	Accuracy	
Current accuracy		<2 %	
Retrip time	approx. 15 ms		
BF time accuracy		<u>+</u> 5 ms	
Current reset time	20 ms		

Table 45 Technical data of the breaker failure protection function

Technical data

Parameters				
Enumerated parameters				
Parameter name	Title	Selection range	Default	
Selection of the operating	mode			
BRF50_Oper_EPar_	Operation	Off, Current, Contact, Current/Contact	Current	
Switching on or off of the repeated trip command				
BRF50_ReTr_EPar_	Retrip	Off, On	On	

Table 46 The enumerated parameters of the breaker failure protection function

Integer parameters						
Parameter name	Title	Unit	Min	Max	Step	Default
Phase current setting						
BRF50_StCurrPh_IPar_	Start Ph Current	%	20	200	1	30
Neutral current setting						
BRF50_StCurrN_IPar_	Start Res Current	%	10	200	1	20

Table 47 The integer parameters of the breaker failure protection function

Timer parameters						
Parameter name	Title	Unit	Min	Max	Step	Default
Time delay for repeated trip	command generation					
BRF50_TrDel_TPar_	Retrip Time Delay	msec	0	10000	1	200
Time delay for trip comman	d generation for the bac	kup circuit	breaker((S)		
BRF50_BUDel_TPar_	Backup Time Delay	msec	60	10000	1	300
Trip command impulse duration						
BRF50_Pulse_TPar_	Pulse Duration	msec	0	60000	1	100

Table 48 The timer parameters of the breaker failure protection function

1.3.1.11 Trip logic (TRC94)

The simple trip logic function operates according to the functionality required by the IEC 61850 standard for the "Trip logic logical node". This simplified software module can be applied if only three-phase trip commands are required, that is, phase selectivity is not applied.

The function receives the trip requirements of the protective functions implemented in the device and combines the binary signals and parameters to the outputs of the device.

The trip requirements are programmed by the user, using the graphic equation editor. The aim of the decision logic is

- to define a minimal impulse duration even if the protection functions detect a very short-time fault.
- •

Technical data			
Function		Accuracy	
Impulse time duration	Setting value	<3 ms	

Table 49 Technical data of the simple trip logic function

Parameters

Enumerated parameter

Parameter name Title Selection range Defau		Default	
Selection of the operating mode			
TRC94_Oper_EPar_	Operation	Off, On	On

Tables 50 The enumerated parameter of the decision logic

Timer parameter

Parameter name	Title	Unit	Min	Max	Step	Default
Minimum duration of the generated impulse						
TRC94_TrPu_TPar_	Min Pulse Duration	msec	50	60000	1	150

Table 51 Timer parameter of the decision logic

1.3.1.12 Dead line detection function (DLD)

The "Dead Line Detection" (DLD) function generates a signal indicating the dead or live state of the line. Additional signals are generated to indicate if the phase voltages and phase currents are above the pre-defined limits.

The task of the "Dead Line Detection" (DLD) function is to decide the Dead line/Live line state.

<u>Criteria of "Dead line" state</u>: all three phase voltages are below the voltage setting value AND all three currents are below the current setting value.

<u>Criteria of "Live line" state</u>: all three phase voltages are above the voltage setting value.

The details are described in the document **Dead line detection protection function block description**.

Technical data

Function	Value	Accuracy
Pick-up voltage		1%
Operation time	<20ms	
Reset ratio	0.95	

Table 52 Technical data of the dead line detection function

Parameters Integer parameters Parameter name Title Unit Min Max Step Default Integer parameters of the dead line detection function % DLD ULev IPar Min. Operate Voltage 10 100 60 1 DLD_ILev_IPar Min. Operate Current % 2 100 1 10

Table 53 The integer parameters of the dead line detection function

1.3.1.13 Current input function (CT4)

If the factory configuration includes a current transformer hardware module, the current input function block is automatically configured among the software function blocks. Separate current input function blocks are assigned to each current transformer hardware module.

A current transformer hardware module is equipped with four special intermediate current transformers. (See Chapter 5 of the EuroProt+ hardware description document.) As usual, the first three current inputs receive the three phase currents (IL1, IL2, IL3), the fourth input is reserved for zero sequence current, for the zero sequence current of the parallel line or for any additional current. Accordingly, the first three inputs have common parameters while the fourth current input needs individual setting.

The role of the current input function block is to

- set the required parameters associated to the current inputs,
- deliver the sampled current values for disturbance recording,
- perform the basic calculations
 - o Fourier basic harmonic magnitude and angle,
 - o True RMS value;
- provide the pre-calculated current values to the subsequent software modules,
- deliver the basic calculated values for on-line displaying.

Operation of the current input algorithm

The current input function block receives the sampled current values from the internal operating system. The scaling (even hardware scaling) depends on parameter setting. See parameters CT4_Ch13Nom_EPar_ (Rated Secondary I1-3) and CT4_Ch4Nom_EPar_ (Rated Secondary I4). The options to choose from are 1A or 5A (in special applications, 0.2A or 1A). This parameter influences the internal number format and, naturally, accuracy. (A small current is processed with finer resolution if 1A is selected.)

If needed, the phase currents can be inverted by setting the parameter CT4_Ch13Dir_EPar_ (Starpoint I1-3). This selection applies to each of the channels IL1, IL2 and IL3. The fourth current channel can be inverted by setting the parameter CT4_Ch4Dir_EPar (Direction I4). This inversion may be needed in protection functions such as distance protection, differential protection or for any functions with directional decision.

These sampled values are available for further processing and for disturbance recording.

The performed basic calculation results the Fourier basic harmonic magnitude and angle and the true RMS value. These results are processed by subsequent protection function blocks and they are available for on-line displaying as well.

The function block also provides parameters for setting the primary rated currents of the main current transformer. This function block does not need that parameter setting. These values are passed on to function blocks such as displaying primary measured values, primary power calculation, etc.

Technical data

Function	Range	Accuracy
Current accuracy	20 – 2000% of In	±1% of In

Table 54 Technical data of the current input

Parameters

Enumerated parameters						
Parameter name	Title	Selection range	Default			
Rated secondary current of the first three input channels. 1A or 5A is selected by parameter setting, no hardware modification is needed.						
CT4_Ch13Nom_EPar_ Rated Secondary I1-3 1A,5A 1A						
Rated secondary current of the fourth input channel. 1A or 5A is selected by parameter setting, no hardware modification is needed.						
CT4_Ch4Nom_EPar_	Rated Secondary I4	1A,5A (0.2A or 1A)	1A			
Definition of the positive direction of the first three currents, given by location of the secondary star connection point						
CT4_Ch13Dir_EPar_	Starpoint I1-3	Line,Bus	Line			
Definition of the positive of	lirection of the fourth current, given	as normal or inverte	ed			
CT4_Ch4Dir_EPar_	Direction I4	Normal, Inverted	Normal			

Table 55 The enumerated parameters of the current input function

Floating point parameters						
Parameter name	Title	Dim.	Min	Max	Default	
Rated primary current of channel1						
CT4_Pril1_FPar_	Rated Primary I1	А	100	4000	1000	
Rated primary current of channel2						
CT4_Pril2_FPar	Rated Primary I2	А	100	4000	1000	
Rated primary current of channel3						
CT4_Pril3_FPar_	Rated Primary I3	А	100	4000	1000	
Rated primary current of channel4						
CT4_Pril4_FPar_	Rated Primary I4	А	100	4000	1000	

Table 56 The floating point parameters of the current input function

NOTE: The rated primary current of the channels is not needed for the current input function block itself. These values are passed on to the subsequent function blocks.

The measured values of the current input function block.

Measured value	Dim.	Explanation
Current Ch - I1	A(secondary)	Fourier basic component of the current in channel IL1
Angle Ch - I1	degree	Vector position of the current in channel IL1
Current Ch – I2	A(secondary)	Fourier basic component of the current in channel IL2
Angle Ch – I2	degree	Vector position of the current in channel IL2
Current Ch – I3	A(secondary)	Fourier basic component of the current in channel IL3
Angle Ch – I3	degree	Vector position of the current in channel IL3
Current Ch – I4	A(secondary)	Fourier basic component of the current in channel I4
Angle Ch – I4	degree	Vector position of the current in channel I4

Table 57 The measured analogue values of the current input function

NOTE1: The scaling of the Fourier basic component is such that if pure sinusoid 1A RMS of the rated frequency is injected, the displayed value is 1A. (The displayed value does not depend on the parameter setting values "Rated Secondary".)

NOTE2: The reference of the vector position depends on the device configuration. If a voltage input module is included, then the reference vector (vector with angle 0 degree) is the vector calculated for the first voltage input channel of the first applied voltage input module. If no voltage input module is configured, then the reference vector (vector with angle 0 degree)

is the vector calculated for the first current input channel of the first applied current input module.

Figure 6 shows an example of how the calculated Fourier components are displayed in the on-line block. (See the document "EuroProt+ Remote user interface description".)

0.84	Α
-9	deç
0.84	А
-129	deç
0.85	A
111	deg
0.00	А
	-9 0.84 -129 0.85 111

Figure 6 Example: On-line displayed values for the current input module

1.3.1.14 Circuit breaker control function block (CB1Pol)

The Circuit breaker control function block can be used to integrate the circuit breaker control of the EuroProt+ device into the station control system and to apply active scheme screens of the local LCD of the device.

The Circuit breaker control function block receives remote commands from the SCADA system and local commands from the local LCD of the device, performs the prescribed checking and transmits the commands to the circuit breaker. It processes the status signals received from the circuit breaker and offers them to the status display of the local LCD and to the SCADA system.

Main features:

- Local (LCD of the device) and Remote (SCADA) operation modes can be enabled or disabled individually.
- The signals and commands of the synchro check / synchro switch function block can be integrated into the operation of the function block.
- Interlocking functions can be programmed by the user applying the inputs "EnaOff" (enabled trip command) and "EnaOn" (enabled close command), using the graphic equation editor.
- Programmed conditions can be used to temporarily disable the operation of the function block using the graphic equation editor.
- The function block supports the control models prescribed by the IEC 61850 standard.
- All necessary timing tasks are performed within the function block:
 - Time limitation to execute a command
 - Command pulse duration
 - Filtering the intermediate state of the circuit breaker
 - Checking the synchro check and synchro switch times
 - Controlling the individual steps of the manual commands
- Sending trip and close commands to the circuit breaker (to be combined with the trip commands of the protection functions and with the close command of the automatic reclosing function; the protection functions and the automatic reclosing function directly gives commands to the CB). The combination is made graphically using the graphic equation editor
- Operation counter
- Event reporting

The Circuit breaker control function block has binary input signals. The conditions are defined by the user applying the graphic equation editor. The signals of the circuit breaker control are seen in the binary input status list.

Technical data	
Function	Accuracy
Operate time accuracy	±5% or ±15 ms, whichever is greater

Table 58 Technical data of the circuit breaker control function

E1-TR configuration description

Title	Selection range	Default	
The control model of the circuit breaker node according to the IEC 61850 standard			
ControlModel*	Direct normal, Direct enhanced, SBO enhanced	Direct normal	
	circuit breaker noc	Selection range circuit breaker node according to the IEC 61850 standard ControlModel* Direct normal, Direct enhanced,	

*ControlModel

- Direct normal: only command transmission
- Direct enhanced: command transmission with status check and command supervision
- SBO enhanced: Select Before Operate mode with status check and command supervision

Table 59 Enumerated parameter of the circuit breaker control function

Boolean parameter		
Boolean parameter	Title	Explanation
CB1Pol_DisOverR_BPar_	Forced check	If true, then the check function cannot be neglected by the check attribute defined by the IEC 61850 standard

Table 60 Boolean parameter of the circuit breaker control function

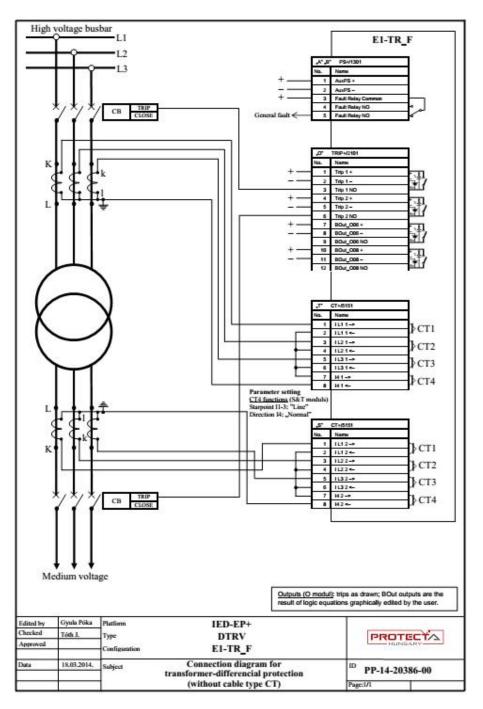
Timer parameters							
Parameter name	Title	Unit	Min	Max	Step	Default	
Timeout for signaling failed operation							
CB1Pol_TimOut_TPar_	Max.Operating time	msec	10	1000	1	200	
Duration of the generated Or	and Off impulse						
CB1Pol_Pulse_TPar_,	Pulse length	msec	50	500	1	100	
Waiting time, at expiry interm	ediate state of the CB	is reported					
CB1Pol_MidPos_TPar_	Max.Intermediate time	msec	20	30000	1	100	
	Length of the time period to wait for the conditions of the synchron state. After expiry of this time, the synchro switch procedure is initiated (see synchro check/ synchro switch function block description)						
CB1Pol_SynTimOut_TPar_	Max.SynChk time	msec	10	5000	1	1000	
Length of the time period to switch function block descrip							
CB1Pol_SynSWTimOut_ TPar_	Max.SynSW time*	msec	0	60000	1	0	
Duration of the waiting time between object selection and command selection. At timeout no command is performed							
CB1Pol_SBOTimeout_ TPar_	SBO Timeout	msec	1000	20000	1	5000	

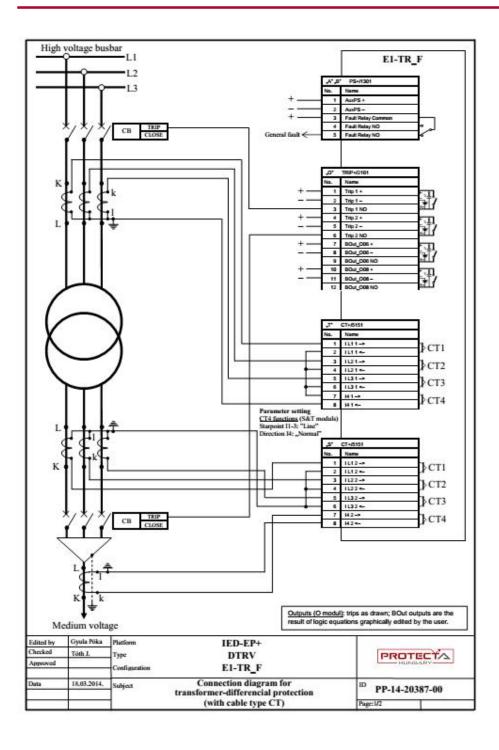
* If this parameter is set to 0, then the "StartSW" output is not activated

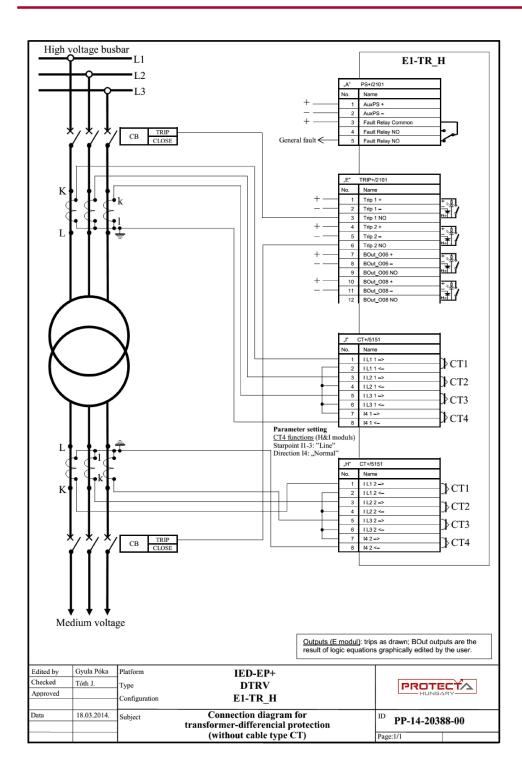
Table 61 Timer parameters of the circuit breaker control function

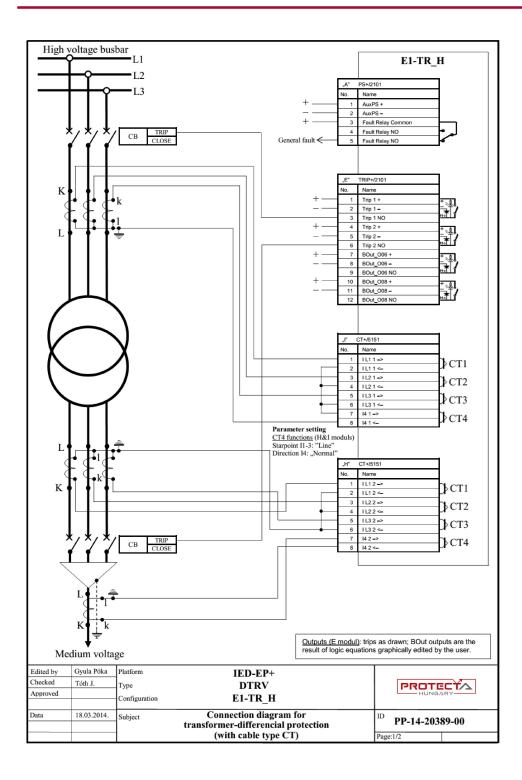
Available internal status variable and command channel

To generate an active scheme on the local LCD, there is an internal status variable indicating the state of the circuit breaker. Different graphic symbols can be assigned to the values. (See Chapter 3.2 of the document "EuroCAP configuration tool for EuroProt+ devices").


Status variable	Title	Explanation
CB1Pol_stVal_lst_	Status	Can be:
		0: Intermediate
		1: Off
		2: On
		3: Bad


The available control channel to be selected is:


Command channel	Title	Explanation
CB1Pol_Oper_Con_	Operation	Can be: On
		Off


Using this channel, the pushbuttons on the front panel of the device can be assigned to close or open the circuit breaker. These are the "Local commands".

2 External connections

