

E6-Feeder configuration description (Type: DTIVA)

Document ID: PP-13-20068 Budapest, March 2014

User's manual version information

Version	Date	Modification	Compiled by
	18. 10. 2011		Petri
	15. 05. 2012	CB1Pol, DisConn, MXU	Kazai, Ferencsik
V1.0	14.04.2013	Modified: 1.1.3 Hardware configuration Added: 2 External connection	Tóth

CONTENTS

	Configurat	tion description	4
	1.1 Applio	cation	4
		Protection functions	
		Measurement functions	
	1.1.3 F	lardware configuration	6
		he applied hardware modules	
	1.2 Meeti	ng the device	7
1		are configuration	
		Protection functions	
	1.3.1.1	Three-phase instantaneous overcurrent protection function (IOC50)	
	1.3.1.2	Three-phase time overcurrent protection function (TOC51)	
	1.3.1.3	Three-phase directional overcurrent protection function (TOC67)	
	1.3.1.4	Residual instantaneous overcurrent protection function (IOC50N)	
	1.3.1.5	Residual overcurrent protection function (TOC51N)	
	1.3.1.6	Residual directional overcurrent protection function (TOC67N)	
	1.3.1.7	Line differential protection function (DIF87L)	
	1.3.1.8	Distance protection function (DIS21_MV)	
	1.3.1.9	Inrush detection function (INR68)	
	1.3.1.10	Negative sequence overcurrent protection function (TOC46)	
	1.3.1.11	Line thermal protection function (TTR49L)	38
	1.3.1.12	Definite time overvoltage protection function (TOV59)	
	1.3.1.13	Definite time undervoltage protection function (TUV27)	
	1.3.1.14	Residual definite time overvoltage protection function (TOV59N)	
	1.3.1.15	Over-frequency protection function (TOF81)	
	1.3.1.16	Underfrequency protection function (TUF81)	
	1.3.1.17	Rate of change of frequency protection function (FRC81)	
	1.3.1.18	Auto-reclose protection (REC79MV)	
	1.3.1.19	Voltage transformer supervision function (VTS60)	
	1.3.1.20	Current unbalance function (VCB60)	
	1.3.1.21	Breaker failure protection function (BRF50)	
	1.3.1.22	Directional over-power protection function (DOP32)	
	1.3.1.23	Directional under-power protection function (DUP32)	
	1.3.1.24	Trip logic (TRC94)	
	1.3.1.25	Dead line detection function (DLD)	
	1.3.1.26	Current input function (CT4)	61
	1.3.1.27	Voltage input function (VT4)	64
	1.3.1.28	Circuit breaker control function block (CB1Pol)	67
	1.3.1.29	Disconnector control function (DisConn)	
	1.3.1.30	Line measurement function (MXU)	72
,	External	onnoction	70
	⊏xtemai c	onnection	/8

1 Configuration description

The E6-Feeder protection device is a member of the *EuroProt+* product line, made by Protecta Co. Ltd. The *EuroProt+* type complex protection in respect of hardware and software is a modular device. The modules are assembled and configured according to the requirements, and then the software determines the functions. This manual describes the specific application of the E6-Feeder factory configuration.

1.1 Application

The members of the DTIVA product line are configured to protect and control the elements of the medium voltage networks.

1.1.1 Protection functions

The E6-Feeder configuration measures three phase currents, the zero sequence current component and additionally three phase voltages and the zero sequence voltage component. These measurements allow, in addition to the current- and voltage-based functions, directionality extension of the configured phase and residual overcurrent function and also directional overpower or underpower functions.

There are two main protection functions in this application: is the distance protection function and also the line differential protection function. The distance protection function is a simplified version: it generates three-phase trip commands, but in case of cross-country faults it realizes also the phase preference logic. The choice of the functions is extended with the automatic reclosing function.

The communication hardware module sends and receives phase current vectors to realize the line differential protection function.

Based on the voltage measurement also the frequency is evaluated to realize frequency-based protection functions. The configuration is designed to meet the requirements of a medium voltage field unit, if distance protection and also line differential protection function is needed. The configured protection functions are listed in the Table below.

Protection functions	IEC	ANSI	E6-Feeder
Three-phase instantaneous overcurrent protection	>>>	50	Х
Three-phase time overcurrent protection	>, >>	51	X
Three-phase directional overcurrent protection	I Dir > >, I Dir >>	67	X
Residual instantaneous overcurrent protection	10 >>>	50N	X
Residual time overcurrent protection	lo >, lo >>	51N	X
Residual directional overcurrent protection	lo Dir > >, lo Dir >>	67N	X
Line differential	31 _d L >	87L	X
Distance protection	Z <	21	X
Inrush detection and blocking	I _{2h} >	68	X
Negative sequence overcurrent protection	l ₂ >	46	X
Thermal protection	T>	49	X
Definite time overvoltage protection	U >, U >>	59	X
Definite time undervoltage protection	U <, U <<	27	X
Residual overvoltage protection	Uo >, Uo >>	59N	X
Negative sequence overvoltage protection	U ₂ >	47	X
Overfrequency protection	f>, f>>	810	X
Underfrequency protection	f <, f <<	81U	X
Rate of change of frequency protection	df/dt	81R	X
Auto-reclose	0 - > 1	79	X
Fuse failure (VTS)		60	X
Current unbalance protection		60	X
Breaker failure protection	CBFP	50BF	X
Directional overpower	P >	32	X
Directional underpower	P <	32	X

Table 1 The protection functions of the E6-Feeder configuration

E6-Feeder 79 Close Trip 41 50 50BF 51 50N 51N 46 68 87L 49 Inrush 67N 67 21 32 27 59 59N 60 81 47 4U Measured values: Recording features:

The configured functions are drawn symbolically in the Figure below.

Figure 1 Implemented protection functions

1.1.2 Measurement functions

U, I, P, Q, E, f, cos φ

Based on the hardware inputs the measurements listed in Table below are available.

Measurement functions	E6-Feeder
Current (I1, I2, I3, Io)	Х
Voltage (U1, U2, U3, U12, U23, U31, Uo, Useq) and frequency	Х
Power (P, Q, S, pf) and Energy (E+, E-, Eq+, Eq-)	Х
Circuit breaker wear	Х
Supervised trip contacts (TCS)	Х

Table 2 The measurement functions of the E6-Feeder configuration

Event Recording

Disturbance Recording

1.1.3 Hardware configuration

The minimum number of inputs and outputs are listed in the Table below.

Hardware configuration	ANSI	E6-Feeder
Mounting		Op.
Panel instrument case		
Current inputs (4th channel can be sensitive)		4
Voltage inputs		4
Digital inputs		12
Digital outputs		8
Fast trip outputs		2
Temperature monitoring (RTDs) *	38 / 49T	Op.

Table 3 The basic hardware configuration of the E6-Feeder configuration

The basic module arrangement of the E6-Feeder configuration is shown below.

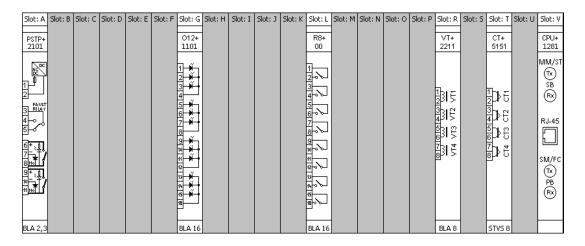


Figure 2 Basic module arrangement of the E6-Feeder configuration (84TE, rear view)

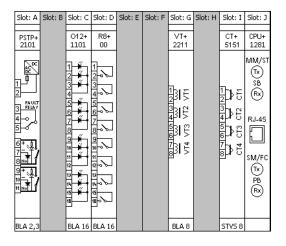


Figure 3 Basic module arrangement of the E6-Feeder configuration (42TE, rear view)

1.1.4 The applied hardware modules

The applied modules are listed in Table 4.

The technical specification of the device and that of the modules are described in the document "Hardware description".

Module identifier	Explanation
PSTP+ 2101	Power supply unit
O12+ 1101	Binary input module
R8+ 00	Signal relay output module
TRIP+ 1101	Trip relay output module
VT+ 2211	Analog voltage input module
CT + 5151	Analog current input module
CPU+ 1281	Processing and communication module

Table 4 The applied modules of the E6-Feeder configuration

1.2 Meeting the device

The basic information for working with the *EuroProt+* devices are described in the document "Quick start guide to the devices of the EuroProt+ product line".

Figure 4 The 84 inch rack of **EuroProt**+ family

Figure 5 The 42 inch rack of EuroProt+ family

1.3 Software configuration

1.3.1 Protection functions

The implemented protection functions are listed in $Table\ 5$. The function blocks are described in details in separate documents. These are referred to also in this table.

Name	Title	Document
IOC50	3ph Instant.OC	Three-phase instantaneous overcurrent
10030	Spirinstant.OC	protection function block description
TOOF4 Jane	2 n h O composition	
TOC51_low	3ph Overcurr	Three-phase overcurrent protection
TOC51_high		function block description
TOC67_low	3ph Dir.Overcurr	Directional three-phase overcurrent
TOC67_high		protection function block description
IOC50N	Residual Instant.OC	Residual instantaneous overcurrent
		protection function block description
TOC51N low	Residual TOC	Residual overcurrent protection function
TOC51N high	1 toolaaai 1 o o	block description
TOC67N low	Dir.Residual TOC	Directional residual overcurrent
	Dir.Residual TOC	
TOC67N_high	11. 1166	protection function block description
DIF87L	Line differential	Line differential protection function block
		description
DIS21_MV	5 zone MV distance	Distance protection function block
		description
INR68	Inrush	Inrush detection and blocking
TOC46	Neg. Seq. OC	Negative sequence overcurrent protection
	3 - 4	function block description
TTR49L	Thermal overload	Line thermal protection function block
TTK+5L	memai ovendad	description
TOV/50 bigh	Overveltere	
TOV59_high	Overvoltage	Definite time overvoltage protection
TOV59_low	11.1.1	function block description
TUV27_high	Undervoltage	Definite time undervoltage protection
TUV27_low		function block description
TOV59N_high	Overvoltage	Definite time zero sequence overvoltage
TOV59N_low		protection function block description
TOF81_high	Overfrequency	Overfrequency protection function block
TOF81 low		description
TUF81_high	Underfrequency	Underfrequency protection function block
TUF81 low		description
FRC81 high	ROC of frequency	Rate of change of frequency protection
FRC81 low	Tree of mequeiney	function block description
REC79MV	MV autoreclosing	Automatic reclosing function for medium
REC/9IVIV	iviv autoreclosing	
		voltage networks, function block
\ (T000	1	description
VTS60	Voltage transformer	Voltage transformer supervision function
	supervision	block description
VCB60	Current Unbalance	Current unbalance function block
		description
BRF50	Breaker failure	Breaker failure protection function block
		description
DOP32	Directional OP	Directional overpower protection function
23102	2.100.101.101	block description
DUP32	Directional UP	Directional underpower protection
DOI 32	Directional OF	function block description
TDC04	Trip Logio	
TRC94	Trip Logic	Trip logic function block description

DLD	Dead line detection	Dead line detection protection function block description		
CT4		Current input function block description		
VT4		Voltage input function block description		
CB1Pol		Circuit breaker control function block descrpition		
DisConn		Disconnector control function block descrpition		
MXU		Line measurement function block descrpition		

Table 5 Implemented protection functions

1.3.1.1 Three-phase instantaneous overcurrent protection function (IOC50)

The three-phase instantaneous overcurrent protection function (IOC50) operates immediately if the phase currents are higher than the setting value.

The setting value is a parameter, and it can be doubled by graphic programming of the dedicated input binary signal defined by the user.

The function is based on peak value selection or on the RMS values of the Fourier basic harmonic calculation, according to the parameter setting. The fundamental Fourier components are results of an external function block.

Parameter for type selection has selection range of Off, Peak value and Fundamental value. When Fourier calculation is selected then the accuracy of the operation is high, the operation time however is above one period of the network frequency. If the operation is based on peak values then fast sub-cycle operation can be expected, but the transient overreach can be high.

The function generates trip commands without additional time delay if the detected values are above the current setting value.

The function generates trip commands for the three phases individually and a general trip command as well.

The instantaneous overcurrent protection function has a binary input signal, which serves the purpose of disabling the function. The conditions of disabling are defined by the user, applying the graphic equation editor.

Technical data

Function		Accuracy				
Using peak value calculation						
Operating characteristic	Instantaneous	<6%				
Reset ratio	0.85					
Operate time at 2*I _S	<15 ms					
Reset time *	< 40 ms					
Transient overreach	90 %					
Using Fourie	r basic harmonic calculat	ion				
Operating characteristic	Instantaneous	<2%				
Reset ratio	0.85					
Operate time at 2* I _S	<25 ms					
Reset time *	< 60 ms					
Transient overreach	15 %					

^{*}Measured with signal contacts

Table 6 Technical data of the instantaneous overcurrent protection function

Parameters

Enumerated parameter

Lindinerated parameter								
Parameter name	Selection range	Default						
Parameter for type selection								
IOC50_Oper_EPar_	Operation	Off, Peak value, Fundamental value	Peak value					

Table 7 The enumerated parameter of the instantaneous overcurrent protection function

Integer parameter

Parameter name	Title	Unit	Min	Max	Step	Default
Starting current parameter:						
IOC50_StCurr_IPar_	Start Current	%	20	3000	1	200

Table 8 The integer parameter of the instantaneous overcurrent protection function

1.3.1.2 Three-phase time overcurrent protection function (TOC51)

The overcurrent protection function realizes definite time or inverse time characteristics according to IEC or IEEE standards, based on three phase currents. The characteristics are harmonized with IEC 60255-151, Edition 1.0, 2009-08. This function can be applied as main protection for medium-voltage applications or backup or overload protection for high-voltage network elements.

The definite (independent) time characteristic has a fixed time delay when the current is above the starting current I_s previously set as a parameter.

The standard operating characteristics of the inverse time overcurrent protection function are defined by the following formula:

$$t(G) = TMS \left[\frac{k}{\left(\frac{G}{G_S}\right)^{\alpha} - 1} + c \right] \text{ when } G > G_S$$

where

theoretical operate time with constant value of G, t(G)(seconds)

constants characterizing the selected curve (in seconds), k, c constants characterizing the selected curve (no dimension), α G

measured value of the characteristic quantity, Fourier base harmonic

of the phase currents (IL1Four, IL2Four, IL3Four),

Gs preset value of the characteristic quantity (Start current),

TMS preset time multiplier (no dimension).

	IEC ref	Title	k _r	С	α
1	Α	IEC Inv	0,14	0	0,02
2	В	IEC VeryInv	13,5	0	1
3	С	IEC ExtInv	80	0	2
4		IEC LongInv	120	0	1
5		ANSI Inv	0,0086	0,0185	0,02
6	D	ANSI ModInv	0,0515	0,1140	0,02
7	Е	ANSI VeryInv	19,61	0,491	2
8	F	ANSI ExtInv	28,2	0,1217	2
9		ANSI LongInv	0,086	0,185	0,02
10		ANSI LongVeryInv	28,55	0,712	2
11		ANSI LongExtInv	64,07	0,250	2

The end of the effective range of the dependent time characteristics (GD) is:

$$G_{\rm D} = 20 * G_{\rm S}$$

Above this value the theoretical operating time is definite:

$$t(G) = TMS \left[\frac{k}{\left(\frac{G_D}{G_S}\right)^{\alpha} - 1} + c \right] \text{ when } G > G_D = 20 * G_S$$

Additionally a minimum time delay can be defined by a dedicated parameter. This delay is valid if it is longer than t(G), defined by the formula above.

Resetting characteristics:

- for IEC type characteristics the resetting is after a fix time delay defined by TOC51_Reset_TPar_ (Reset delay),
- for ANSI types however according to the formula below:

$$t_r(G) = TMS \left[\frac{k_r}{1 - \left(\frac{G}{G_S} \right)^{\alpha}} \right] \text{ when } G < G_S$$

where

 $t_r(G)$ (seconds) theoretical reset time with constant value of G,

k_r constants characterizing the selected curve (in seconds),
 α constants characterizing the selected curve (no dimension),

G measured value of the characteristic quantity, Fourier base harmonic

of the phase currents,

Gs preset value of the characteristic quantity (Start current),

TMS preset time multiplier (no dimension).

	IEC ref	Title	k _r	α
1	Α	IEC Inv	Resetting after fix ti	me delay,
2	В	IEC VeryInv	according to preset	parameter
3	С	IEC ExtInv	TOC51_Reset_TPa	ar_
4		IEC LongInv	"Reset delay"	
5		ANSI Inv	0,46	2
6	D	ANSI Modinv	4,85	2
7	Е	ANSI Verylnv	21,6	2
8	F	ANSI ExtInv	29,1	2
9		ANSI LongInv	4,6	2
10		ANSI LongVeryInv	13,46	2
11		ANSI LongExtInv	30	2

The binary output status signals of the three-phase overcurrent protection function are starting signals of the three phases individually, a general starting signal and a general trip command.

The overcurrent protection function has a binary input signal, which serves the purpose of disabling the function. The conditions of disabling are defined by the user, applying the graphic equation editor.

Technical data

Function	Value	Accuracy
Operating accuracy	20 ≤ G _S ≤ 1000	< 2 %
Operate time accuracy		±5% or ±15 ms, whichever is greater
Reset ratio	0,95	
Reset time * Dependent time char. Definite time char.	Approx 60 ms	< 2% or ±35 ms, whichever is greater
Transient overreach		< 2 %
Pickup time *	< 40 ms	
Overshot time Dependent time char. Definite time char.	30 ms 50 ms	
Influence of time varying value of the input current (IEC 60255-151)		< 4 %

^{*} Measured with signal relay contact

Table 9 Technical data of of the instantaneous overcurrent protection function

Parameters

Enumerated parameters

Parameter name	Title	Selection range	Default			
Parameter for type selection						
TOC51_Oper_EPar_	Operation	Off, DefinitTime, IEC Inv, IEC VeryInv, IEC ExtInv, IEC LongInv, ANSI Inv, ANSI ModInv, ANSI VeryInv, ANSI ExtInv, ANSI LongInv, ANSI LongExtInv	Definit Time			

Table 10 The enumerated parameters of the time overcurrent protection function

Integer parameter

Parameter name	Title	Unit	Min	Max	Step	Default
Starting current parameter	:					
TOC51_StCurr_IPar_	Start Current	%	20	1000	1	200

Table 11 The integer parameter of the time overcurrent protection function

Float point parameter

1 lout point parameter						
Parameter name	Title	Unit	Min	Max	Step	Default
Time multiplier of the inverse characteristics (OC module)						
TOC67 Multip FPar	Time Multiplier	sec	0.05	999	0.01	1.0

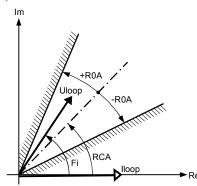
Table 12 The float point parameter of the time overcurrent protection function

Timer parameters

Timer parameters						
Parameter name	Title	Unit	Min	Max	Step	Default
Minimal time delay for the inverse characteristics:						
TOC51_MinDel_TPar_	Min Time Delay *	msec	0	60000	1	100
Definite time delay:						
TOC51_DefDel_TPar_	Definite Time Delay **	msec	0	60000	1	100
Reset time delay for the inverse characteristics:						
TOC51_Reset_TPar_	Reset Time*	msec	0	60000	1	100

^{*}Valid for inverse type characteristics

Table 13 The timer parameters of the time overcurrent protection function


^{**}Valid for definite type characteristics only

1.3.1.3 Three-phase directional overcurrent protection function (TOC67)

The directional three-phase delayed overcurrent protection function can be applied on solidly grounded networks, where the overcurrent protection must be supplemented with a directional decision.

The inputs of the function are the Fourier basic harmonic components of the three phase currents and those of the three phase voltages and the three line-to-line voltages.

Based on the measured voltages and currents from among the six loops (L1L2, L2L3, L3L1, L1N, L2N, L3N), the function selects the one with the smallest calculated loop impedance. Based on the loop voltage and loop current of the selected loop, the directional decision generates a signal of TRUE value if the voltage and the current is sufficient for directional decision, and the angle difference between the vectors is within the setting range. This decision enables the output start and trip signal of a non-directional three-phase overcurrent protection function block, based on the selected current.

The function can be enabled or disabled by a parameter. The status signal of the VTS (voltage transformer supervision) function can also disable the directional operation.

The voltage must be above 5% of the rated voltage and the current must also be measurable.

If the voltages are below 5% of the rated voltage then the algorithm substitutes the small values with the voltages stored in the memory.

The directional decision module calculates the phase angle between the selected loop voltage and the loop current. The reference signal is the current according to *Figure*.

The three-phase non-directional delayed overcurrent function block (TOC51) is described in a separate document. The additional input binary signal enables the operation of the OC function if the directional decision module generates a logic TRUE value, indicating that the phase angle is in the range defined by the preset parameters or that non-directional operation is set by a parameter.

Technical data

Function	Value	Accuracy
Operating accuracy		< 2 %
Operate time accuracy	If Time multiplier is >0.1	±5% or ±15 ms, whichever is greater
Accuracy in minimum time range		±35 ms
Reset ratio	0,95	
Reset time	Approx 100 ms	
Transient overreach	2 %	
Pickup time	<100 ms	
Memory storage time span		
50 Hz	70 ms	
60 Hz	60 ms	
Angular accuracy		<3°

Table 14 Technical data of the three-phase directional overcurrent protection function

Parameters

Enumerated parameters

Parameter name	Title	Selection range	Default
Directionality of the function	on		
TOC67_Dir_EPar_	Direction	NonDir, Forward, Backward	Forward
Operating characteristic s	election of the	TOC51 module	
TOC67_Oper_EPar_	Operation	Off, DefiniteTime, IEC Inv, IEC VeryInv, IEC ExtInv, IEC LongInv, ANSI Inv, ANSI ModInv, ANSI VeryInv, ANSI ExtInv, ANSI LongInv, ANSI LongVeryInv, ANSI LongExtInv	DefiniteTime

Table 15 The enumerated parameters of the three-phase directional overcurrent protection function

Integer parameters

Parameter name	Title	Unit	Min	Max	Step	Default
Operating angle (see Figure)						
TOC67_ROA_IPar_	Operating Angle	deg	30	80	1	60
Characteristic angle (see F.	igure)					
TOC67_RCA_IPar_	Characteristic Angle	deg	40	90	1	60
Start current (OC module)						
TOC67_StCurr_IPar_	Start Current	%	20	1000	1	50

Table 16 The integer parameters of the three-phase directional overcurrent protection function

Float point parameter

Parameter name	Title	Unit	Min	Max	Digits	Default
Time multiplier of the inverse characteristics (OC module)						
TOC67_Multip_FPar_	Time Multiplier	sec	0.05	999	-2	1.0

Table 17 The float point parameter of the three-phase directional overcurrent protection function

Timer parameters

minor paramotoro						
Parameter name	Title	Unit	Min	Max	Step	Default
Minimal time delay for the inverse characteristics (OC module):						
TOC67_MinDel_TPar_	Min. Time	msec	50	60000	1	100
Definite time delay (OC mod	ule):					
TOC67_DefDel_TPar_	Definite Time	msec	0	60000	1	100
Reset time delay for the inverse characteristics (OC module):						
TOC67_Reset_TPar_	Reset Time	msec	0	60000	1	100

Table 18 The timer parameters of the three-phase directional overcurrent protection function

1.3.1.4 Residual instantaneous overcurrent protection function (IOC50N)

The residual instantaneous overcurrent protection function (IOC50N) block operates immediately if the residual current (3lo) is above the setting value. The setting value is a parameter, and it can be doubled by a dedicated binary input signal defined by the user applying the graphic programming.

The function is based on peak value selection or on the RMS values of the Fourier basic harmonic component of the residual current, according to the parameter setting. The fundamental Fourier component calculation is not part of the IOC50N function.

Parameter for type selection has selection range of Off, Peak value and Fundamental value.

The function generates a trip commands without additional time delay if the detected values are above the current setting value.

The residual instantaneous overcurrent protection function has a binary input signal, which serves the purpose of disabling the function. The conditions of disabling are defined by the user, applying the graphic equation editor.

Technical data

Function		Accuracy				
Using peak value calculation						
Operating characteristic (I>0.1 In)	Instantaneous	<6%				
Reset ratio	0.85					
Operate time at 2*I _S	<15 ms					
Reset time *	< 35 ms					
Transient overreach	85 %					
Using Fouri	er basic harmonic calculati	ion				
Operating characteristic (I>0.1 In)	Instantaneous	<3%				
Reset ratio	0.85					
Operate time at 2*I _S	<25 ms					
Reset time *	< 60 ms					
Transient overreach	15 %					

^{*}Measured with signal contacts

Table 19 Technical data of the residual instantaneous overcurrent protection function

Parameters

Enumerated parameter

Parameter name	Title	Selection range	Default		
Parameter for type selection					
IOC50N_Oper_EPar_ Operation Off, Peak value, Fundamental value Peak value					

Table 20 The enumerated parameter of the residual instantaneous overcurrent protection function

Integer parameter

Parameter name	Title	Unit	Min	Max	Step	Default
Starting current parameter:						
IOC50N_StCurr_IPar_	Start Current	%	10	400	1	200

Table 21 The integer parameter of the residual instantaneous overcurrent protection function

1.3.1.5 Residual overcurrent protection function (TOC51N)

The residual delayed overcurrent protection function can realize definite time or inverse time characteristics according to IEC or IEEE standards, based on the RMS value of the fundamental Fourier component of a single measured current, which can be the measured residual current at the neutral point (3Io) or the calculated zero sequence current component. The characteristics are harmonized with IEC 60255-151, Edition 1.0, 2009-08.

The definite (independent) time characteristic has a fixed time delay when the current is above the starting current I_s previously set as a parameter.

The standard operating characteristics of the inverse time overcurrent protection function are defined by the following formula:

$$t(G) = TMS \left[\frac{k}{\left(\frac{G}{G_S}\right)^{\alpha} - 1} + c \right] \text{ when } G > G_S$$

where

t(G)(seconds) theoretical operate time with constant value of G,

k, c constants characterizing the selected curve (in seconds), constant characterizing the selected curve (no dimension),

G measured value of the characteristic quantity, Fourier base harmonic

of the residual current (INFour),

G_S preset value of the characteristic quantity (Start current),

TMS preset time multiplier (no dimension).

	IEC ref		k _r	С	α
1	Α	IEC Inv	0,14	0	0,02
2	В	IEC VeryInv	13,5	0	1
3	С	IEC ExtInv	80	0	2
4		IEC LongInv	120	0	1
5		ANSI Inv	0,0086	0,0185	0,02
6	D	ANSI ModInv	0,0515	0,1140	0,02
7	Е	ANSI Verylnv	19,61	0,491	2
8	F	ANSI ExtInv	28,2	0,1217	2
9		ANSI LongInv	0,086	0,185	0,02
10		ANSI LongVeryInv	28,55	0,712	2
11		ANSI LongExtInv	64,07	0,250	2

The end of the effective range of the dependent time characteristics (GD) is:

$$G_{\rm D} = 20 * G_{\rm S}$$

Above this value the theoretical operating time is definite:

$$t(G) = TMS \left[\frac{k}{\left(\frac{G_D}{G_S}\right)^{\alpha} - 1} + c \right] \text{ when } G > G_D = 20 * G_S$$

Additionally a minimum time delay can be defined by a dedicated parameter (Min. Time Delay). This delay is valid if it is longer than t(G), defined by the formula above.

Resetting characteristics:

- for IEC type characteristics the resetting is after a fix time delay,
- for ANSI types however according to the formula below:

$$t_r(G) = TMS \left[\frac{k_r}{1 - \left(\frac{G}{G_S} \right)^{\alpha}} \right] \text{ when } G < G_S$$

where

 $t_r(G)$ (seconds) theoretical reset time with constant value of G,

k_r constants characterizing the selected curve (in seconds),
 α constant characterizing the selected curve (no dimension),

G measured value of the characteristic quantity, Fourier base harmonic

of the residual current,

G_S preset value of the characteristic quantity (Start current),

TMS preset time multiplier (no dimension).

	IEC ref		k _r	α
1	Α	IEC Inv	Resetting after fix	time delay,
2	В	IEC VeryInv	according to pres	et parameter
3	С	IEC ExtInv	TOC51_Rese	
4		IEC LongInv	"Reset delay"	
5		ANSI Inv	0,46	2
6	D	ANSI ModInv	4,85	2
7	Е	ANSI Verylnv	21,6	2
8	F	ANSI ExtInv	29,1	2
9		ANSI LongInv	4,6	2
10		ANSI LongVeryInv	13,46	2
11		ANSI LongExtInv	30	2

The binary output status signals of the residual overcurrent protection function are the general starting signal and the general trip command if the time delay determined by the characteristics expired.

The residual overcurrent protection function has a binary input signal, which serves the purpose of disabling the function. The conditions of disabling are defined by the user, applying the graphic equation editor.

Technical data

Function	Value	Accuracy
Operating accuracy *	20 ≤ G _S ≤ 1000	< 3 %
Operate time accuracy		±5% or ±15 ms, whichever is greater
Reset ratio	0,95	
Reset time * Dependent time char. Definite time char.	Approx 60 ms	< 2% or ±35 ms, whichever is greater
Transient overreach		2 %
Pickup time	≤ 40 ms	
Overshot time		
Dependent time char.	30 ms	
Definite time char.	50 ms	
Influence of time varying value of the input current (IEC 60255-151)		< 4 %

^{*} Measured in version In = 200 mA

Table 22 The technical data of the residual overcurrent protection function

Parameters

Enumerated parameters

Parameter name	Title	Selection range	Default		
Parameter for type selection					
TOC51N_Oper_EPar_	Operation	Off, DefinitTime, IEC Inv, IEC Verylnv, IEC Extlnv, IEC Longlnv, ANSI Inv, ANSI ModInv, ANSI Verylnv, ANSI Extlnv, ANSI Longlnv, ANSI LongVerylnv, ANSI LongExtlnv	Definite Time		

Table 23 The enumerated parameters of the residual overcurrent protection function

Integer parameter

Parameter name	Title	Unit	Min	Max	Step	Default
Starting current parameter:						
TOC51N_StCurr_IPar_	Start Current *	%	5	200	1	50
TOC51N_StCurr_IPar_	Start Current **	%	10	1000	1	50

^{*} In = 1 A or 5 A

Table 24 The integer parameter of the residual overcurrent protection function

Float point parameter

Parameter name	Title	Unit	Min	Max	Step	Default
Time multiplier of the inverse characteristics (OC module)						
TOC51N_Multip_FPar_	Time Multiplier	sec	0.05	999	0.01	1.0

Table 25 The float parameter of the residual overcurrent protection function

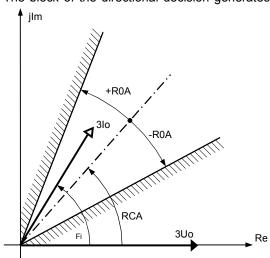
Timer parameters

Parameter name	Title	Unit	Min	Max	Step	Default
Minimal time delay for the inverse characteristics:						
TOC51N_MinDel_TPar_	Min Time Delay*	msec	0	60000	1	100
Definite time delay:						
TOC51N_DefDel_TPar_	Definite Time Delay**	msec	0	60000	1	100
Reset time delay for the inverse characteristics:						
TOC51N_Reset_TPar_	Reset Time*	msec	0	60000	1	100

^{*}Valid for inverse type characteristics

Table 26 The timer parameters of the residual overcurrent protection function

^{**} In = 200 mA or 1 A


^{**}Valid for definite type characteristics only

1.3.1.6 Residual directional overcurrent protection function (TOC67N)

The main application area of the directional residual delayed overcurrent protection function is an earth-fault protection.

The inputs of the function are the RMS value of the Fourier basic harmonic components of the zero sequence current (IN=3Io) and those of the zero sequence voltage (UN=3Uo).

The block of the directional decision generates a signal of TRUE value if the UN=3Uo zero

sequence voltage and the IN=3lo zero sequence current are above the limits needed for correct directional decision, and the angle difference between the vectors is within the preset range. The decision enables the output start and trip signal of an overcurrent protection function block (TOC51N). This non-directional residual overcurrent protection function block is described in a separate document.

The directional decision module calculates the phase angle between the residual voltage and the residual current. The reference signal is the residual voltage according to the *Figure*.

The output of the directional decision module is OK, namely it is TRUE if the phase angle between the residual voltage and the residual current is within the limit range defined by the preset parameter OR if non-directional operation is selected by the preset parameter (Direction=NonDir).

Technical data

Function	Value	Accuracy
Operating accuracy		< ±2 %
Operate time accuracy		±5% or ±15 ms, whichever is greater
Accuracy in minimum time range		±35 ms
Reset ratio	0,95	
Reset time	Approx 50 ms	±35 ms
Transient overreach	<2 %	
Pickup time	25 – 30 ms	
Angular accuracy lo ≤ 0.1 In		< ±10°
$0.1 \ln < \log \le 0.4 \ln$		< ±5°
0.4 ln < lo		< ±2°
Angular reset ratio		
Forward and backward	10°	
All other selection	5°	

Table 27 The technical data of the residual directional overcurrent protection function

Parameters

Enumerated parameters

Parameter name	Title Selection range		Default
Directionality of the function	n		
TOC67N_Dir_EPar_	Direction	NonDir,Forward-Angle,Backward- Angle,Forward-I*cos(fi),Backward- I*cos(fi),Forward-I*sin(fi),Backward- I*sin(fi),Forward-I*sin(fi+45),Backward- I*sin(fi+45)	Forward- Angle
Operating characteristic se	election of the	TOC51N module	
TOC67N_Oper_EPar_	Operation	Off,DefiniteTime,IEC Inv,IEC VeryInv,IEC ExtInv,IEC LongInv,ANSI Inv,ANSI ModInv,ANSI VeryInv,ANSI ExtInv,ANSI LongInv,ANSI LongVeryInv,ANSI LongExtInv	DefiniteTime

Table 28 The enumerated parameters of the residual directional overcurrent protection function

Short explanation of the enumerated parameter "Direction"

Selected value	Explanation
NonDir,	Operation according to non-directional TOC51N
Forward-Angle	See Figure, set RCA (Characteristic Angle) and ROA (Operating Angle) as required
Backward-Angle	RCAactual=RCAset+180°, set RCA (Characteristic Angle) and ROA (Operating Angle) as required
Forward-I*cos(fi)	RCA=0°fix, ROA=85°fix, the setting values RCA and ROA are not applied
Backward-I*cos(fi)	RCA=180°fix, ROA=85°fix, the setting values RCA and ROA are not applied
Forward-I*sin(fi)	RCA=90°fix, ROA=85°fix, the setting values RCA and ROA are not applied
Backward-I*sin(fi)	RCA=-90°fix, ROA=85°fix, the setting values RCA and ROA are not applied
Forward-I*sin(fi+45)	RCA=45°fix, ROA=85°fix, the setting values RCA and ROA are not applied
Backward-I*sin(fi+45)	RCA=-135°fix, ROA=85°fix, the setting values RCA and ROA are not applied

Table 29 The short explanation of the enumerated parameters of the residual directional overcurrent protection function

Integer parameters

Parameter name	Title	Unit	Min	Max	Step	Default
The threshold value for the 3Uo zero sequence voltage, below which no directionality is possible.						
% of the rated voltage of the	e voltage transformer inpu	it				
TOC67N_UoMin_IPar_	URes Min	%	1	10	1	2
The threshold value for the	3lo zero sequence currer	nt, below wh	nich no c	peration i	s possib	ole.
% of the rated current of the current transformer input						
TOC67N_loMin_lPar_	IRes Min	%	1	50	1	5
Operating angle (See Figur	re)					
TOC67N_ROA_IPar_	Operating Angle	deg	30	80	1	60
Characteristic angle (See Figure)						
TOC67N_RCA_IPar_	Characteristic Angle	deg	-180	180	1	60
Start current (TOC51N module)						
TOC67N_StCurr_IPar_	Start Current	%	5	200	1	50

Table 30 The integer parameters of the residual directional overcurrent protection function

Float point parameter

Parameter name	Title	Unit	Min	Step	Step	Default
Time multiplier of the inverse characteristics (TOC51N module)						
TOC67N_Multip_FPar_	Time Multiplier	sec	0.05	999	0.01	1.0

Table 31 The float point parameter of the residual directional overcurrent protection function

Timer parameters

Parameter name	Title	Unit	Min	Max	Step	Default
Minimal time delay for the inverse characteristics (TOC 51N module):						
TOC67N_MinDel_TPar_	Min Time Delay	msec	50	60000	1	100
Definite time delay (TOC 5	Definite time delay (TOC 51N module):					
TOC67N_DefDel_TPar_	Definite Time Delay	msec	0	60000	1	100
Reset time delay for the inverse characteristics (TOC 51N module):						
TOC67N_Reset_TPar_	Reset Time	msec	0	60000	1	100

Table 32 The timer parameters of the residual directional overcurrent protection function

1.3.1.7 Line differential protection function (DIF87L)

The line differential protection function provides main protection for two terminal transmission lines. The line differential protection function does not apply vector shift compensation, thus transformers must be excluded from the protected section.

The operating principle is based on synchronized Fourier basic harmonic comparison between the line ends.

The devices at both line ends sample the phase currents and calculate the Fourier basic harmonic components. These components are exchanged between the devices synchronized via communication channels. The differential characteristic is a biased characteristic with two break points. Additionally, an unbiased overcurrent stage is applied, based on the calculated differential current.

The EuroProt+ protection devices communicate via fiber optic cables. Generally, mono-mode cables are required, but for distances below 2 km a multi-mode cable may be sufficient. The line differential protection can be applied up to the distance of 120 km. (The limiting factor is the damping of the fiber optic channel: up to 30 dB is permitted to prevent the disturbance of operation.)

The hardware module applied is the CPU module of the EuroProt+ protection device. The two devices are interconnected via the "process bus".

Technical data

Tooliillour data		
Function	Value	Accuracy
On a mating of a mark a minting	2 breakpoints and	
Operating characteristic	unrestrained decision	
Reset ratio	0.95	
Characteristic accuracy (Ibias>2xIn)		<2%
Operate time (Ibias>0.3xIn)	Typically 35 ms	
Reset time	Typically 60 ms	

Table 33 Technical data of the line differential protection

Parameters

Enumerated parameter for the line differential protection function:

Parameter name	Title	Selection range	Default	
Parameter to enable the line differential protection function:				
DIFF87L_Oper_EPar_	Operation	Off, On	Off	

Table 34 The enumerated parameter of the line differential protection function

Integer parameters

Parameter name	Title	Unit	Min	Max	Step	Default
Parameters of the percent	Parameters of the percentage characteristic curve:					
Base sensitivity:	Base sensitivity:					
DIFF87L_f1_IPar_	Base Sensitivity	%	10	50	1	30
Slope of the second section of the characteristics:						
DIFF87L_f21_IPar_	1st Slope	%	10	50	1	30
Slope of the third section	of the characteristics					
DIFF87L_f2_IPar_	2nd Slope	%	50	100	1	70
Bias limit of the first slope	Bias limit of the first slope:					
DIFF87L_f2Brk_IPar_	1st Slope Bias Limit	%	100	400	1	200
Unrestrained line differential protection current level:						
DIFF87L_HS_IPar_	UnRst Diff Current	%	500	1500	1	800

Table 35 The integer parameters of the line differential protection function

Floating point parameters

Parameter name	Title	Unit	Min	Max	Step	Default
DIFF87L_LocalRatio_FPar_	Local Ratio	-	0.10	2.00	0.01	1.00
DIFF87L_RemoteRatio_FPar_,	Remote Ratio	-	0.10	2.00	0.01	1.00

Table 36 The float parameters of the line differential protection function

Timer parameters

The line differential protection function does not have timers.

1.3.1.8 Distance protection function (DIS21 MV)

The distance protection function provides main protection for overhead lines and cables of networks, the neutral of which is isolated or grounded via arc suppression coil (Petersen coil). The main features of the function are as follows:

- The selected algorithm fits the requirements of Petersen compensated networks or networks where the neutral point is not connected to the ground.
- A full-scheme system provides continuous measurement of impedance separately in three independent phase-to-phase measuring loops.
- Phase-to-phase impedance calculation is conditional of the values of phase currents being sufficient, and no considerable zero sequence current component is detected. The current is considered to be sufficient for impedance calculation if it is above the defined value. Similarly the zero sequence current must be below a level set by parameters.
- Full-scheme faulty phase identification by minimum impedance detection.
- For "cross-country-faults" phase preference can be defined by parameter setting.
- To decide the presence or absence of the "cross-country-faults", biased zero sequence current characteristics are applied.
- Five independent distance protection zones are configured.
- The operating decision is based on polygon-shaped characteristics.
- Load encroachment characteristics can be selected.
- The directional decision is dynamically based on:
 - o measured loop voltages if they are sufficient for decision,
 - o voltages stored in the memory if they are available,
- The operation of any zones can be directional or non-directional if it is optionally selected.
- The distance protection function can operate properly even in case CVT application.
- Non-directional impedance protection function or high speed OC protection function is applied in case of switch-onto-fault.
- Distance-to-fault evaluation is implemented (fault locator function).
- Binary input signals and conditions can influence the operation:
 - blocking/enabling
 - VT failure signal
- Integrated high-speed overcurrent back-up function is also implemented.

Operation for line-to-line faults

The distance protection supplied by PROTECTA Ltd. continuously measures the impedances in the three possible fault loops. The calculation is performed in the phase-to-phase loops based on the line-to-line voltages and the difference of the affected phase currents. These equations are summarized in Table 1 for different types of faults. The result of this calculation is the positive sequence impedance of the fault loop, including the positive sequence fault resistance at the fault location.

The condition of line-to-line fault decision is the absence of the zero sequence current component in the phase currents.

Fault	Calculation of Z	Other possible calculation
L1L2L3(N)	$Z_{L2L3} = \frac{U_{L2} - U_{L3}}{I_{L2} - I_{L3}}$	Z_{L1L2} , Z_{L2L3} , Z_{L3L1}
L1L2	$Z_{L1L2} = \frac{U_{L1} - U_{L2}}{I_{L1} - I_{L2}}$	
L2L3	$Z_{L2L3} = \frac{U_{L2} - U_{L3}}{I_{L2} - I_{L3}}$	
L3L1	$Z_{L3L1} = \frac{U_{L3} - U_{L1}}{I_{L3} - I_{L1}}$	

Table 37 Formulas for the calculation of the impedance to fault

The central column of Table 37 contains the correct formula for calculation. The formulas referred to in the right-hand-side column yield the same correct impedance value.

It can be proven that the appropriate application of the formulas in Table 37 will always yield the positive sequence impedance between the fault location and the relay location.

The algorithm continuously calculates the impedances of the three line-to-line fault loops, then the "SELECT" decision module selects the impedance for the trip decision.

Single-phase-to-ground faults

In case of single-phase-to-ground faults

- in isolated networks, only small capacitive current flows,
- in compensated networks the current is further decreased by the compensating effect of the Petersen (arc suppression) coil.

The distance protection function cannot be set to react to these small currents to avoid maloperation for normal load currents. The protection against ground fault is the task of other protection functions.

Operation for "cross-country-faults"

In case of single-phase-to-ground faults, the voltage of the involved phase becomes zero, but the voltages of the healthy phases on the entire galvanically connected network increase to the line-to-line value. This increased voltage increases the chance to ignite another additional ground fault anywhere on the network, resulting a "cross-country-fault". If the faults are located on different lines, then the protection related to one of the involved lines detects high fault current in one of the phases, the protection of the other line measures high current in the other involved phase.

In isolated or compensated networks, only one fault has to be removed with high speed to interrupt the cross-country-fault (double ground fault) current. This is the task of the distance protection function. The remaining small current of the other ground fault will be detected by another protection function.

For this reason, all distance relays in the galvanically connected network have the same "cross-country-fault phase preference system". In all distance protection relays detecting fault, only the leading or the lagging phase-to-ground fault impedance loop is evaluated depending on the used preference. The result is clearing only one of the ground faults.

As an example, the Figure below shows a "cross-country-fault": in the three-phase line P the involved phase is L1 and in the three-phase line Q the phase is L2.

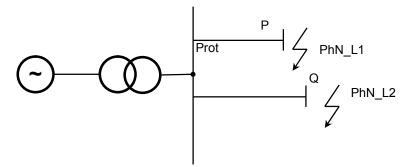


Figure 6 "Cross-country-fault"

In the Figure above, as an example, if the preference system "Cyclic312" is selected then only the line P is to be disconnected, as L1 is leading, and the single-phase-to-ground fault on line Q remains with small current to be handled by the earth-fault protection system.

Table 34 contains the correct formulas for distance measurement. These formulas are applied only if the calculated "zero sequence current" lo= (IL1+IL2+IL3)/3 is detected to be high. In case of cross-country faults in each involved three-phase lines, one of the fault currents is "missing" because it flows on the other involved three-phase lines. Consequently the calculated zero sequence current is high.

The algorithm continuously calculates the impedances of the three line-to-ground fault loops; then the "SELECT" decision module selects the impedance for the trip decision.

It can be proven that in case of cross-country faults the appropriate application of the formulas in Table 34 always yields the positive sequence impedance between the fault location and the relay location for both involved lines. The required phase preference decision needs additional calculation.

Fault	Calculation of Z	Earth fault factor
L1	$Z_{L1} = \frac{U_{L1}}{I_{L1} + \alpha 3I_o}$	
L2	$Z_{L2} = \frac{U_{L2}}{I_{L2} + \alpha 3I_o}$	$\alpha = \frac{Z_0 - Z_1}{3Z_1}$
L3	$Z_{L3} = \frac{U_{L3}}{I_{L3} + \alpha 3I_o}$	

Table 38 Formulas for the distance measurement

The selection equations for the phase preference are shown in Table 35. The right column shows that the denominator of the selection equation is a current, chosen according to the phase preference logic. The selection is listed according to Table 36.

Cross-country fault	Calculation of Zpref	Preference
L1L2	$Z_{L1L2_php} = \frac{U_{L1} - U_{L2}}{2I_{Lx}}$	In the lower index "Lx" is the phase identifier selected according to the phase preference logic (See Table 1-4)
L2L3	$Z_{L2L3_php} = \frac{U_{L2} - U_{L3}}{2I_{Ly}}$	In the lower index "Ly" is the phase identifier selected according to the phase preference logic (See Table 1-4)
L3L1	$Z_{L3L1_php} = \frac{U_{L3} - U_{L1}}{2I_{Lz}}$	In the lower index "Lz" is the phase identifier selected according to the phase preference logic (See Table 1-4)

Table 39 Formulas for the calculation of the phase preference

	$Z_{{\scriptscriptstyle L1L2_php}}$	Z_{L2L3_php}	Z_{L3L1_php}
Parameter Phase Pref	Lx	Ly	Lz
NoCross	No	calculation is performe	ed*
NoPref	No selection is nee	eded, TRIP command fo	r both faulty bays**
Cyc132	L2	L3	L1
Cyc312	L1	L2	L3
Acyc132	L1	L3	L1
Acyc123	L1	L2	L1
Acyc321	L2	L3	L3
Acyc312	L1	L3	L3
Acyc213	L2	L2	L1
Acyc231	L2	L2	L3

^{*} with "NoCross" setting, for cross-country faults no operation is programmed; trip command is generated for line-to-line faults at the same three-phase line only

Table 40 Trip selection for "cross-country-faults"

It can be proven that the selection equations, if the line-to-line faulty voltage and one of the faulty line currents is selected for the calculation, then the measured distance is somewhat above the average distance of both fault locations. (The increase is because the zero sequence voltage is higher then the positive one.) Because of the average distance, the result is not suitable for distance decision, but it can be used for the directional decision of the fault (forward or backward). The other voltage and current combinations result impedances which are phase-shifted by a considerable angle, related to the positive sequence impedance of the line between the relay and the fault location.

The TRIP command is generated, if the calculated impedance according to the equations in Table 2 is within the distance characteristic AND the direction according to the formulas in Table 3 also detect positive direction.

^{**} with "NoPref" setting the function can be applied also for solidly grounded networks, however the DIS21HV distance protection function is preferred for these application for higher speed and for additional functions like power swing detection and for considering the impedance distortion due to the supply at the far line end.

For stabilizing the decision, if one of the faults is a close-up fault, an additional criterion is applied: the directional decision formula applies a line-to-line voltage; the opposite phase voltage of which must be the largest one among the measured phase voltages.

Name	Title	Explanation
DIS21_HTXkm_OLM_	Fault location	Measured distance to fault in kilometers
DIS21_HTXohm_OLM_	Fault react.	Measured reactance to fault
DIS21_L12_R_OLM_	L12 loop R	Measured positive sequence resistance in L12 loop
DIS21_L12_X_OLM_	L12 loop X	Measured positive sequence reactance in L12 loop
DIS21_L23_R_OLM_	L23 loop R	Measured positive sequence resistance in L23 loop
DIS21_L23_X_OLM_	L23 loop X	Measured positive sequence reactance in L23 loop
DIS21_L31_R_OLM_	L31 loop R	Measured positive sequence resistance in L31 loop
DIS21_L31_X_OLM_	L31 loop X	Measured positive sequence reactance in L31 loop

Table 41 The measured values of the distance protection function

Technical data

Function	Range	Accuracy			
Number of zones	5				
Rated current In	1/5A, p	parameter setting			
Rated voltage Un	100/200\	/, parameter setting			
Current effective range	20 – 2000% of In	±1% of In			
Voltage effective range	2-110 % of Un	±1% of Un			
Impedance effective range					
In=1A	0.1 – 200 Ohm	±5%			
In=5A	0.1 – 40 Ohm				
Zono statio accuracy	48 Hz – 52 Hz	±5%			
Zone static accuracy	49.5 Hz – 50.5 Hz	±2%			
Zone angular accuracy		±3°			
Operate time	Typically 30 ms	±3 ms			
Minimum operate time	<25 ms				
Reset time	16 – 25 ms				
Reset ratio	1.1				

Table 42 Technical data of the 5-zone distance protection

The measured values of the distance protection function.

Measured value	Dim.	Explanation
ZL1L2 = RL1L2+j XL1L2	ohm	Measured positive sequence impedance in the L1L2
	J	loop
ZL2L3 = RL2L3+j XL2L3	ohm	Measured positive sequence impedance in the L2L3
ZLZL3 - KLZL3+J XLZL3	Offill	loop
7 2 1 = D 2 1 V 2 1	ohm	Measured positive sequence impedance in the L3L1
ZL3L1 = RL3L1+j XL3L1	Offiffi	loop
Fault location	km	Measured distance to fault
Fault react.	ohm	Measured reactance in the fault loop

Table 43 The measured analogue values of the distance protection function

Parameters

The parameters of the distance protection function are explained in the following tables. **Enumerated parameters**

Parameter name	Title	Selection range	Default			
Parameters to select dire	ctionality of the	e individual zones:				
DIS21_Z1_EPar_ Operation Zone1		Off, Forward, Backward	Off			
DIS21_Z2_EPar_	Operation Zone2	Off, Forward, Backward, NonDirectional	Off			
DIS21_Z3_EPar_	Operation Zone3	Off, Forward, Backward, NonDirectional	Off			
DIS21_Z4_EPar_	Operation Zone4	Off, Forward, Backward, NonDirectional	Off			
DIS21_Z5_EPar_	Operation Zone5	Off, Forward, Backward, NonDirectional	Off			
Parameters for selection	at "cross-count	try-fault":				
DIS21_Pref_EPar_	Phase Pref*	NoCross,NoPref, Cyc132,Cyc312, Acyc132,Acyc123,Acyc321,Acyc312, Acyc213,Acyc231	Cyc312			
Parameter for selecting one of the zones or "high speed overcurrent protection" for the "switch-onto-fault" function:						
DIS21_SOTFMd_EPar _	SOTF Zone	Off, Zone1, Zone2, Zone3, Zone4, Zone5, HSOC	Zone1			

^{*}See * with "NoCross" setting, for cross-country faults no operation is programmed; trip command is generated for line-to-line faults at the same three-phase line only

Table 44 The enumerated parameters of the distance protection function

	Fault in L1, L2	Fault in L2, L3	Fault in L3, L1			
Parameter Phase Pref						
NoCross	No TRIP co	ommand for "Cross-cour	ntry-faults"*			
NoPref	TRIP o	command for both faulty	bays**			
Cyc132	L2	L3	L1			
Cyc312	L1	L2	L3			
Acyc132	L1	L3	L1			
Acyc123	L1	L2	L1			
Acyc321	L2	L3	L3			
Acyc312	L1	L3	L3			
Acyc213	L2	L2	L1			
Acyc231	L2	L2	L3			

^{*} with "NoCross" setting, for cross-country faults no operation is programmed; trip command is generated for line-to-line faults at the same three-phase line only

Table 45 Trip selection for "cross-country-faults"

^{**} with "NoPref" setting the function can be applied also for solidly grounded networks, however the DIS21HV distance protection function is preferred for these application for higher speed and for additional functions like power swing detection and for considering the impedance distortion due to the supply at the far line end.

^{**} with "NoPref" setting the function can be applied also for solidly grounded networks, however the DIS21HV distance protection function is preferred for these application for higher speed and for additional functions like power swing detection and for considering the impedance distortion due to the supply at the far line end.

Boolean parameters for the individual zones to generate trip command (0) or to indicate starting only (1):

Parameter name	Title	Default	Explanation
DIS21_Z1St_BPar_	Zone1 Start Only	0	0 for Zone1 to generate trip command
DIS21_Z2St_BPar_	Zone2 Start Only	0	0 for Zone2 to generate trip command
DIS21_Z3St_BPar_	Zone3 Start Only	0	0 for Zone3 to generate trip command
DIS21_Z4St_BPar_	Zone4 Start Only	0	0 for Zone4 to generate trip command
DIS21_Z5St_BPar_	Zone5 Start Only	0	0 for Zone5 to generate trip command

Table 46 The Boolean parameters of the distance protection function

Integer parameters

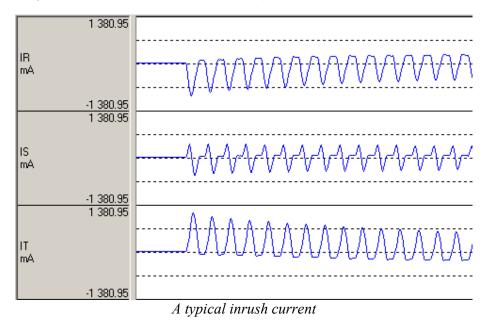
Parameter name Title		Unit	Min	Max	Step	Default
Definition of minimal curre	nt enabling impedance ca	alculation:				
DIS21_Imin_IPar_	%	10	30	1	20	
Definition of minimal curre	nt enabling "cross-country	y-fault" ca	lculatio	n:		
DIS21_loBase_IPar_	IRes Crosscountry	%	50	200	1	50
DIS21_loBias_IPar_	IRes Bias	%	5	30	1	10
Definition of the polygon cl	naracteristic angle in the	4 th quadra	ant of th	e imped	ance pla	ane:
DIS21_dirRX_IPar_	Angle 2th Quad	deg	0	30	1	15
Definition of the polygon cl	naracteristic angle in the	2 nd quadr	ant of th	ne imped	dance pl	ane:
DIS21_dirXR_IPar_	Angle 4nd Quad	deg	0	30	1	15
Definition of the polygon cl	naracteristic's zone reduc	tion angle	e on the	impeda	ince plai	ne:
DIS21_Cut_IPar_	Zone Reduct Angle	deg	0	40	1	0
Definition of the load angle	of the polygon character	ristic:				
DIS21_LdAng_IPar_	Load Angle	deg	0	45	1	30
Definition of the line angle:						
DIS21_LinAng_IPar_ Line Angle deg 45 90 1 75						75
Definition of the overcurrer DIS21 SOTFMd EPar (\$				for the	case wh	ere the
DIS21_SOTFOC_IPar_	SOTF Current	%	10	1000	1	200

Table 47 The integer parameters of the distance protection function

Floating point parameters

Parameter name	Title	Dim.	Min	Max	Default
R and X setting values for	the five zones individually:	1			
DIS21_Z1R_FPar	Zone1 R	ohm	0.1	200	10
DIS21_Z2R_FPar	Zone2 R	ohm	0.1	200	10
DIS21_Z3R_FPar	Zone3 R	ohm	0.1	200	10
DIS21_Z4R_FPar	Zone4 R	ohm	0.1	200	10
DIS21_Z5R_FPar	Zone5 R	ohm	0.1	200	10
DIS21_Z1X_FPar	Zone1 X	ohm	0.1	200	10
DIS21_Z2X_FPar	Zone2 X	ohm	0.1	200	10
DIS21_Z3X_FPar	Zone3 X	ohm	0.1	200	10
DIS21_Z4X_FPar	Zone4 X	ohm	0.1	200	10
DIS21_Z5X_FPar	Zone5 X	ohm	0.1	200	10
Load encroachment setting	g:				
DIS21_LdR_FPar	R Load	ohm	0.1	200	10
Zero sequence current cor	npensation factors for the	five zones	individually:		
DIS21_Z1aX_FPar_	Zone1 (Xo-X1)/3X1		0	5	1
DIS21_Z1aR_FPar_	Zone1 (Ro-R1)/3R1		0	5	1
DIS21_Z2aX_FPar_	Zone2 (Xo-X1)/3X1		0	5	1
DIS21_Z2aR_FPar_	Zone2 (Ro-R1)/3R1		0	5	1
DIS21_Z3aX_FPar_	Zone3 (Xo-X1)/3X1		0	5	1
DIS21_Z3aR_FPar_	Zone3 (Ro-R1)/3R1		0	5	1
DIS21_Z4aX_FPar_	Zone4 (Xo-X1)/3X1		0	5	1
DIS21_Z4aR_FPar_	Zone4 (Ro-R1)/3R1		0	5	1
DIS21_Z5aX_FPar_	Zone5 (Xo-X1)/3X1		0	5	1
DIS21_Z5aR_FPar_	Zone5 (Ro-R1)/3R1		0	5	1
DIS21_Lgth_FPar_	Line Length	km	0.1	1000	100
DIS21_LReact_FPar_	Line Reactance	ohm	0.1	200	10

Table 48 The floating-point parameters of the distance protection function


Timer parameters

Parameter name	Title	Unit	Min	Max	Step	Default
Time delay for the zones individually:						
DIS21_Z1Del_TPar_	Zone1 Time Delay	ms	0	60000	1	0
DIS21_Z2Del_TPar_	Zone2 Time Delay	ms	0	60000	1	400
DIS21_Z3Del_TPar_	Zone3 Time Delay	ms	0	60000	1	800
DIS21_Z4Del_TPar_	Zone4 Time Delay	ms	0	60000	1	2000
DIS21_Z5Del_TPar_	Zone5 Time Delay	ms	0	60000	1	2000

Table 49 The timer parameters of the distance protection function

1.3.1.9 Inrush detection function (INR68)

When an inductive element with an iron core (transformer, reactor, etc.) is energized, high current peak values can be detected. This is caused by the transient asymmetric saturation of the iron core as a nonlinear element in the power network. The sizing of the iron core is usually sufficient to keep the steady state magnetic flux values below the saturation point of the iron core, so the inrush transient slowly dies out. These current peaks depend also on random factors such as the phase angle at energizing. Depending on the shape of the magnetization curve of the iron core, the detected peaks can be several times above the rated current peaks. Additionally, in medium or high voltage networks, where losses and damping are low, the indicated high current values may be sustained at length. Figure below shows a typical example for the inrush current shapes of a three-phase transformer.

As a consequence, overcurrent relays, differential relays or distance relays may start, and because of the long duration of the high current peaks, they may generate an unwanted trip command.

The inrush current detection function can distinguish between high currents caused by overload or faults and the high currents during the inrush time.

The operating principle of the inrush current detection function is based on the special shape of the inrush current.

The typical inrush current in one or two phases is asymmetrical to the time axis. For example, in IT of the Figure above the positive peaks are high while no peaks can be detected in the negative domain.

The theory of the Fourier analysis states that even harmonic components (2nd, 4th etc.) are dominant in waves asymmetrical to the time axis. The component with the highest value is the second one.

Typical overload and fault currents do not contain high even harmonic components.

The inrush current detection function processes the Fourier basic harmonic component and the second harmonic component of the three phase currents. If the ratio of the second harmonic and the base Fourier harmonic is above the setting value of the parameter *2nd Harm Ratio*, an inrush detection signal is generated.

The signal is output only if the base harmonic component is above the level defined by the setting of the parameter *IPh Base Sens*. This prevents unwanted operation in the event that low currents contain relatively high error signals.

The function operates independently using all three phase currents individually, and additionally, a general inrush detection signal is generated if any of the phases detects inrush current.

The function can be disabled by the binary input *Disable*. This signal is the result of logic equations graphically edited by the user.

Using the inrush detection binary signals, other protection functions can be blocked during the transient period so as to avoid the unwanted trip.

Some protection functions use these signals automatically, but a stand-alone inrush detection function block is also available for application at the user's discretion.

Technical data

Function	Range	Accuracy
Current accuracy	20 2000% of In	±1% of In

Table 50 Technical data of the inrush detection function

Parameters

Enumerated parameter

Parameter name	Title Selection range Defa					
Disabling or enabling the operation of the function						
INR2_Op_EPar_	Operation	Off,On	On			

Table 51 The enumerated parameter of the inrush detection function

Integer parameters

Parameter name	Title	Unit	Min	Max	Step	Default
Ratio of the second and basic harmonic Fourier components						
INR2_2HRat_IPar_,	2nd Harm Ratio	%	5	50	1	15
Basic sensitivity of the function						
INR2_MinCurr_IPar_	IPh Base Sens	%	20	100	1	30

Table 52 The integer parameter of the inrush detection function

1.3.1.10 Negative sequence overcurrent protection function (TOC46)

The negative sequence overcurrent protection function (TOC46) block operates if the negative sequence current is higher than the preset starting value.

In the negative sequence overcurrent protection function, definite-time or inverse-time characteristics are implemented, according to IEC or IEEE standards. The function evaluates a single measured current, which is the RMS value of the fundamental Fourier component of the negative sequence current. The characteristics are harmonized with IEC 60255-151, Edition 1.0, 2009-08.

The definite (independent) time characteristic has a fixed delaying time when the current is above the starting current G_s previously set as a parameter.

The standard dependent time characteristics of the negative sequence overcurrent protection function are as follows.

$$t(G) = TMS \left[\frac{k}{\left(\frac{G}{G_S}\right)^{\alpha} - 1} + c \right] \text{ when } G > G_S$$

where

t(G)(seconds) theoretical operate time with constant value of G,

k, c constants characterizing the selected curve (in seconds), constant characterizing the selected curve (no dimension),

G measured value of the characteristic quantity, Fourier base harmonic

of the negative sequence current (INFour),

G_S preset starting value of the characteristic quantity,

TMS preset time multiplier (no dimension).

	IEC ref		k _r	С	α
1	Α	IEC Inv	0,14	0	0,02
2	В	IEC VeryInv	13,5	0	1
3	С	IEC ExtInv	80	0	2
4		IEC LongInv	120	0	1
5		ANSI Inv	0,0086	0,0185	0,02
6	D	ANSI Modinv	0,0515	0,1140	0,02
7	Е	ANSI Verylnv	19,61	0,491	2
8	F	ANSI ExtInv	28,2	0,1217	2
9		ANSI LongInv	0,086	0,185	0,02
10		ANSI LongVeryInv	28,55	0,712	2
11		ANSI LongExtInv	64,07	0,250	2

Table 53 The constants of the standard dependent time characteristics

A parameter (Operation) serves for choosing overcurrent function of independent time delay or dependent one with type selection above.

Time multiplier of the inverse characteristics (TMS) is also a parameter to be preset.

The end of the effective range of the dependent time characteristics (GD) is:

$$G_D = 20 * G_S$$

Above this value the theoretical operating time is definite. The inverse type characteristics are also combined with a minimum time delay, the value of which is set by user parameter TOC46_MinDel_TPar_ (Min. Time Delay).

The negative phase sequence components calculation is based on the Fourier components of the phase currents.

The binary output status signals of the negative sequence overcurrent protection function are the general starting and the general trip command of the function.

The negative sequence overcurrent protection function has a binary input signal, which serves the purpose of disabling the function. The conditions of disabling are defined by the user, applying the graphic equation editor.

Technical data

Function	Value	Accuracy
Operating accuracy	10 ≤ G _s [%] ≤ 200	< 2 %
Operate time accuracy		±5% or ±15 ms, whichever is greater
Reset ratio	0,95	
Reset time * Dependent time charact. Definite time charact.	approx. 60 ms	<2 % or ±35 ms, whichever is greater
Transient overreach		< 2 %
Pickup time at 2* G _s	<40 ms	
Overshot time		
Dependent time charact.	25 ms	
Definite time charact.	45 ms	
Influence of time varying value of the input current (IEC 60255-151)		< 4 %

^{*} Measured with signal contacts

Table 54 Technical data of the negative sequence overcurrent protection function

Parameters

Enumerated parameter

Parameter name	Title	Selection range	Default
Parameter for type select	ction		
TOC46_Oper_EPar_	Operation	Off, DefinitTime, IEC Inv, IEC VeryInv, IEC ExtInv, IEC LongInv, ANSI Inv, ANSI ModInv, ANSI VeryInv, ANSI ExtInv, ANSI LongInv, ANSI LongVeryInv, ANSI LongExtInv	Definit Time

Table 55 The enumerated parameter of the negative sequence overcurrent protection function

Integer parameter

Parameter name	Title	Unit	Min	Max	Step	Default			
Starting current parameter:									
TOC46_StCurr_IPar_	Start Current	%	5	200	1	50			

Table 56 The integer parameter of the negative sequence overcurrent protection function

Parameter name	Title	Unit	Min	Max	Step	Default
Minimal time delay for the inverse characteristics:						
TOC46_MinDel_TPar_	Min Time Delay*	msec	0	60000	1	100
Definite time delay:						
TOC46_DefDel_TPar_	Definite Time Delay**	msec	0	60000	1	100
Reset time delay for the inve	erse characteristics:					
TOC46_Reset_TPar_	Reset Time*	msec	0	60000	1	100
Time multiplier for the inverse characteristics:						
TOC46_Multip_TPar_	Time Multiplier*	msec	100	60000	1	100

^{*}Valid for inverse type characteristics

Table 57 The timer parameter of the negative sequence overcurrent protection function

^{**}Valid for definite type characteristics only

1.3.1.11 Line thermal protection function (TTR49L)

Basically, line thermal protection measures the three sampled phase currents. RMS values are calculated and the temperature calculation is based on the highest RMS value of the phase currents.

The temperature calculation is based on the step-by-step solution of the thermal differential equation. This method yields "overtemperature", meaning the temperature above the ambient temperature. Accordingly, the temperature of the protected object is the sum of the calculated "overtemperature" and the ambient temperature.

If the calculated temperature (calculated "overtemperature"+ambient temperature) is above the threshold values, alarm, trip and restart blocking status signals are generated.

For correct setting, the following values must be measured and set as parameters; rated load current is the continuous current applied for the measurement, rated temperature is the steady state temperature at rated load current, base temperature is the temperature of the environment during the measurement and the time constant is the measured heating/cooling time constant of the exponential temperature function.

When energizing the protection device, the algorithm permits the definition of the starting temperature as the initial value of the calculated temperature. The parameter Startup Term. is the initial temperature above the temperature of the environment as compared to the rated temperature above the temperature of the environment

The ambient temperature can be measured using e.g. a temperature probe generating electric analog signals proportional to the temperature. In the absence of such measurement, the temperature of the environment can be set using the dedicated parameter TTR49L_Amb_IPar_ (Ambient Temperature). The selection between parameter value and direct measurement is made by setting the binary Boolean parameter.

The problem of metal elements (the protected line) exposed to the sun is that they are overheated as compared to the "ambient" temperature even without a heating current; furthermore, they are cooled mostly by the wind and the heat transfer coefficient is highly dependent on the effects of the wind. As the overhead lines are located in different geographical environments along the tens of kilometers of the route, the effects of the sun and the wind cannot be considered in detail. The best approximation is to measure the temperature of a piece of overhead line without current but exposed to the same environmental conditions as the protected line itself.

The application of thermal protection of the overhead line is a better solution than a simple overcurrent-based overload protection because thermal protection "remembers" the preceding load states of the line and the setting of the thermal protection does not need so a high security margin between the permitted current and the permitted continuous thermal current of the line. In a broad range of load states and in a broad range of ambient temperatures this permits the better exploitation of the thermal and consequently current carrying capacity of the line.

The thermal differential equation to be solved is:

$$\frac{d\Theta}{dt} = \frac{1}{T} (\frac{I^2(t)R}{hA} - \Theta)$$
, and the definition of the heat time constant is: $T = \frac{cm}{hA}$

In this differential equation:

I(t) (RMS) heating current, the RMS value usually changes over time; R resistance of the line; С specific heat capacity of the conductor: mass of the conductor: m θ

rise of the temperature above the temperature of the environment;

h heat transfer coefficient of the surface of the conductor;

Α area of the surface of the conductor;

time.

The solution of the thermal differential equation for constant current is the temperature as the function of time (the mathematical derivation of this equation is described in a separate document):

$$\Theta(t) = \frac{I^2 R}{hA} \left(1 - e^{-\frac{t}{T}} \right) + \Theta_o e^{-\frac{t}{T}}$$

where

 Θ_{\circ} is the starting temperature.

Remember that the calculation of the measurable temperature is as follows:

Temperature(t) = $\Theta(t)$ +Temp_ambient

where

Temp_ambient is the a

is the ambient temperature.

In a separate document it is proven that some more easily measurable parameters can be introduced instead of the aforementioned ones. Thus, the general form of equation above is:

$$H(t) = \frac{\Theta(t)}{\Theta_n} = \frac{I^2}{I_n^2} \left(1 - e^{-\frac{t}{T}} \right) + \frac{\Theta_o}{\Theta_n} e^{-\frac{t}{T}}$$

where:

H(t) is the "thermal level" of the heated object, this is the temperature as a percentage of the Θ_n reference temperature. (This is a dimensionless quantity but it can also be expressed in a percentage form.)

 Θ_n is the reference temperature above the temperature of the environment, which can be measured in steady state, in case of a continuous I_n reference current. In the reference current (can be considered as the nominal current of the heated

object). If it flows continuously, then the reference temperature can be measured in steady state.

 $\frac{\Theta_o}{\Theta_o}$ is a parameter of the starting temperature related to the reference temperature

The RMS calculations modul calculate the RMS values of the phase currents individually. The sampling frequency of the calculations is 1 kHz; therefore, theoretically, the frequency components below 500Hz are considered correctly in the RMS values. This module is not part of the thermal overload function; it belongs to the preparatory phase.

The Max selection module selects the maximal value of the three RMS phase currents.

The *Thermal replica module* solves the first order thermal differential equation using a simple step-by-step method and compares the calculated temperature to the values set by parameters. The temperature sensor value proportional to the ambient temperature can be an input (this signal is optional, defined at parameter setting).

The function can be disblaed by parameter, or generates a trip pulse if the calculated temperature exceeds the trip value, or generates a trip signal if the calculated temperature exceeds the trip value given by a parameter but it resets only if the temperature cools below the "Unlock temperature".

The line thermal protection function has two binary input signals. The conditions of the input signal are defined by the user, applying the graphic equation editor. One of the signals can block the line thermal protection function, the other one can reset the accumulated heat and set the temperature to the defined value for the subsequent heating test procedure.

Technical data

Function	Accuracy
Operate time at I>1.2*Itrip	<3 % or <+ 20 ms

Table 58 Technical data of the line thermal protection function

Parameters

Enumerated parameter

Parameter name	Title	Selection range	Default			
Parameter for mode of operation						
TTR49L_Oper_EPar_	Operation	Off, Pulsed, Locked	Pulsed			

Table 59 The enumerated parameter of the line thermal protection function

The meaning of the enumerated values is as follows:

Off the function is switched off; no output status signals are generated;

Pulsed the function generates a trip pulse if the calculated temperature exceeds the

trip value

Locked the function generates a trip signal if the calculated temperature exceeds the

trip value. It resets only if the temperature cools below the "Unlock

temperature".

Integer parameters

Integer parameters						
Parameter name	Title	Unit	Min	Max	Step	Default
Alarm Temperature						
TTR49L_Alm_IPar_	Alarm Temperature	deg	60	200	1	80
Trip Temperature						
TTR49L_Trip_IPar_	Trip Temperature	deg	60	200	1	100
Rated Temperature						
TTR49L_Max_IPar_	Rated Temperature	deg	60	200	1	100
Base Temperature						
TTR49L_Ref_IPar_	Base Temperature	deg	0	40	1	25
Unlock Temperature						
TTR49L_Unl_IPar_	Unlock Temperature	deg	20	200	1	60
Ambient Temperature						
TTR49L_Amb_IPar_	Ambient Temperature	deg	0	40	1	25
Startup Term.						
TTR49L_Str_IPar	Startup Term	%	0	60	1	0
Rated Load Current						
TTR49L_Inom_IPar_	Rated Load Current	%	20	150	1	100
Time constant						
TTR49L_pT_IPar_	Time Constant	min	1	999	1	10

Table 60 The integer parameters of the line thermal protection function

Boolean parameter

Boolean parameter	rameter Signal title Selection range		Default		
Parameter for ambient temperature sensor application					
TTR49L_Sens_BPar_	Temperature Sensor	No, Yes	No		

Table 61 The boolean parameter of the line thermal protection function

1.3.1.12 Definite time overvoltage protection function (TOV59)

The definite time overvoltage protection function measures three voltages. The measured values of the characteristic quantity are the RMS values of the basic Fourier components of the phase voltages.

The Fourier calculation inputs are the sampled values of the three phase voltages (UL1, UL2, UL3), and the outputs are the basic Fourier components of the analyzed voltages (UL1Four, UL2Four, UL3Four). They are not part of the TOV59 function; they belong to the preparatory phase.

The function generates start signals for the phases individually. The general start signal is generated if the voltage in any of the three measured voltages is above the level defined by parameter setting value.

The function generates a trip command only if the definite time delay has expired and the parameter selection requires a trip command as well.

The overvoltaget protection function has a binary input signal, which serves the purpose of disabling the function. The conditions of disabling are defined by the user, applying the graphic equation editor.

Technical data

1001111041 4444		
Function	Value	Accuracy
Pick-up starting accuracy		< ± 0,5 %
Blocking voltage		< ± 1,5 %
Reset time		
U< → Un	60 ms	
U< → 0	50 ms	
Operate time accuracy		< ± 20 ms
Minimum operate time	50 ms	

Table 62 Technical data of the definite time overvoltage protection function

Parameters

Enumerated parameter

Parameter name	Title	Selection range	Default		
Enabling or disabling the overvoltage protection function					
TOV59_Oper_EPar_	Operation	Off, On	On		

Table 63 The enumerated parameter of the definite time overvoltage protection function

Integer parameter

Parameter name	Title	Unit	Min	Max	Step	Default
Voltage level setting. If the measured voltage is above the setting value, the function generates a start signal.						
TOV59_StVol_IPar_	Start Voltage	%	30	130	1	63

Table 64 The integer parameter of the definite time overvoltage protection function

Boolean parameter

Parameter name	Title	Default
Enabling start signal only:		
TOV59_StOnly_BPar_	Start Signal Only	FALSE

Table 65 The boolean parameter of the definite time overvoltage protection function

Parameter name	Title	Unit	Min	Max	Step	Default
Time delay of the overvoltage protection function.						
TOV59_Delay_TPar_	Time Delay	ms	0	60000	1	100

Table 66 The timer parameter of the definite time overvoltage protection function

1.3.1.13 Definite time undervoltage protection function (TUV27)

The definite time undervoltage protection function measures the RMS values of the fundamental Fourier component of three phase voltages.

The Fourier calculation inputs are the sampled values of the three phase voltages (UL1, UL2, UL3), and the outputs are the basic Fourier components of the analyzed voltages (UL1Four, UL2Four, UL3Four). They are not part of the TUV27 function; they belong to the preparatory phase.

The function generates start signals for the phases individually. The general start signal is generated if the voltage is below the preset starting level parameter setting value and above the defined blocking level.

The function generates a trip command only if the definite time delay has expired and the parameter selection requires a trip command as well.

The operation mode can be chosen by the type selection parameter. The function can be disabled, and can be set to "1 out of 3", "2 out of 3", and "All".

The overvoltage protection function has a binary input signal, which serves the purpose of disabling the function. The conditions of disabling are defined by the user, applying the graphic equation editor.

Technical data

Function	Value	Accuracy
Pick-up starting accuracy		< ± 0,5 %
Blocking voltage		< ± 1,5 %
Reset time		
U> → Un	50 ms	
U> → 0	40 ms	
Operate time accuracy		< ± 20 ms
Minimum operate time	50 ms	

Table 67 Technical data of the definite time undervoltage protection function

Parameters

Enumerated parameter

Parameter name	Title	Selection range	Default
Parameter for type select	ction		
TUV27_Oper_EPar_	Operation	Off, 1 out of 3, 2 out of 3, All	1 out of 3

Table 68 The enumerated parameter of the definite time undervoltage protection function

Integer parameters

Parameter name	Title	Unit	Min	Max	Step	Default
Starting voltage level setting						
TUV27_StVol_IPar_	Start Voltage	%	30	130	1	52
Blocking voltage level se	Blocking voltage level setting					
TUV27_BlkVol_lPar_	Block Voltage	%	0	20	1	10

Table 69 The integer parameters of the definite time undervoltage protection function

Boolean parameter

Parameter name	Title	Default
Enabling start signal only:		
TUV27_StOnly_BPar_	Start Signal Only	FALSE

Table 70 The boolean parameter of the definite time undervoltage protection function

Parameter name	Title	Unit	Min	Max	Step	Default
Time delay of the undervoltage protection function.						
TUV27_Delay_TPar_	Time Delay	ms	0	60000	1	100

Table 71 The timer parameter of the definite time undervoltage protection function

1.3.1.14 Residual definite time overvoltage protection function (TOV59N)

The residual definite time overvoltage protection function operates according to definite time characteristics, using the RMS values of the fundamental Fourier component of the zero sequence voltage (UN=3Uo).

The Fourier calculation inputs are the sampled values of the residual or neutral voltage (UN=3Uo) and the outputs are the RMS value of the basic Fourier components of those.

The function generates start signal if the residual voltage is above the level defined by parameter setting value.

The function generates a trip command only if the definite time delay has expired and the parameter selection requires a trip command as well.

The residual overvoltage protection function has a binary input signal, which serves the purpose of disabling the function. The conditions of disabling are defined by the user, applying the graphic equation editor.

Technical data

- Common data		
Function	Value	Accuracy
Diek up storting acquirecy	2 – 8 %	< ± 2 %
Pick-up starting accuracy	8 – 60 %	< ± 1.5 %
Reset time		
U> → Un	60 ms	
U> → 0	50 ms	
Operate time	50 ms	< ± 20 ms

Table 72 Technical data of the residual definite time overvoltage protection function

Parameters

Enumerated parameter

Parameter name	Default				
Parameter for enabling/disabling:					
TOV59N_Oper_EPar_	Operation	Off, On	On		

Table 73 The enumerated parameter of the residual definite time overvoltage protection function

Integer parameter

Parameter name	Title	Unit	Min	Max	Step	Default
Starting voltage parameter						
TOV59N_StVol_IPar_	Start Voltage	%	2	60	1	30

Table 74 The integer parameter of the residual definite time overvoltage protection function

Boolean parameter

Parameter name	Title	Default
Enabling start signal only:		
TOV59N StOnly BPar	Start Signal Only	FALSE

Table 75 The boolean parameter of the residual definite time overvoltage protection function

Parameter name	Title	Unit	Min	Max	Step	Default
Definite time delay:						
TOV59N_Delay_TPar_	Time Delay	ms	0	60000	1	100

Table 76 The time parameter of the residual definite time overvoltage protection function

1.3.1.15 Over-frequency protection function (TOF81)

The deviation of the frequency from the rated system frequency indicates unbalance between the generated power and the load demand. If the available generation is large compared to the consumption by the load connected to the power system, then the system frequency is above the rated value. The over-frequency protection function is usually applied to decrease generation to control the system frequency.

Another possible application is the detection of unintended island operation of distributed generation and some consumers. In the island, there is low probability that the power generated is the same as consumption; accordingly, the detection of high frequency can be one of the indication of island operation.

Accurate frequency measurement is also the criterion for the synchro-check and synchroswitch functions.

The accurate frequency measurement is performed by measuring the time period between two rising edges at zero crossing of a voltage signal. For the acceptance of the measured frequency, at least four subsequent identical measurements are needed. Similarly, four invalid measurements are needed to reset the measured frequency to zero. The basic criterion is that the evaluated voltage should be above 30% of the rated voltage value.

The over-frequency protection function generates a start signal if at least five measured frequency values are above the preset level.

Time delay can also be set.

The function can be enabled/disabled by a parameter.

The over-frequency protection function has a binary input signal. The conditions of the input signal are defined by the user, applying the graphic equation editor. The signal can block the under-frequency protection function.

Technical data

Function	Range	Accuracy
Operate range	40 - 70 Hz	30 mHz
Effective range	45 - 55 Hz / 55 - 65 Hz	2 mHz
Operate time		min 140 ms
Time delay	140 – 60000 ms	± 20 ms
Reset ratio		0,99

Table 77 Technical data of the over-frequency protection function

Parameters

Enumerated parameter

Enamoratoa paramotor					
Parameter name Title Selection range		Selection range	Default		
Selection of the operating mode					
TOF81_Oper_EPar_	Operation	Off,On	On		

Table 78 The enumerated parameter of the over-frequency protection function

Boolean parameter

Parameter name	Title	Default
Enabling start signal only:		
TOF81_StOnly_BPar_	Start Signal Only	FALSE

Table 79 The boolean parameter of the over-frequency protection function

Float point parameter

· · · · · · · · · · · · · · · · · · ·						
Parameter name	Title	Unit	Min	Max	Step	Default
Setting value of the comparison						
TOF81_St_FPar_	Start Frequency	Hz	40	60	0.01	51

Table 80 The float point parameter of the over-frequency protection function

Parameter name	Title	Unit	Min	Max	Step	Default
Time delay						
TOF81_Del_TPar_	Time Delay	msec	100	60000	1	200

Table 81 The timer parameter of the over-frequency protection function

1.3.1.16 Underfrequency protection function (TUF81)

The deviation of the frequency from the rated system frequency indicates unbalance between the generated power and the load demand. If the available generation is small compared to the consumption by the load connected to the power system, then the system frequency is below the rated value. The under-frequency protection function is usually applied to increase generation or for load shedding to control the system frequency.

Another possible application is the detection of unintended island operation of distributed generation and some consumers. In the island, there is low probability that the power generated is the same as consumption; accordingly, the detection of low frequency can be one of the indications of island operation.

Accurate frequency measurement is also the criterion for the synchro-check and synchroswitch functions.

The accurate frequency measurement is performed by measuring the time period between two rising edges at zero crossing of a voltage signal. For the acceptance of the measured frequency, at least four subsequent identical measurements are needed. Similarly, four invalid measurements are needed to reset the measured frequency to zero. The basic criterion is that the evaluated voltage should be above 30% of the rated voltage value.

The under-frequency protection function generates a start signal if at least five measured frequency values are below the setting value.

Time delay can also be set.

The function can be enabled/disabled by a parameter.

The under-frequency protection function has a binary input signal. The conditions of the input signal are defined by the user, applying the graphic equation editor. The signal can block the under-frequency protection function.

Technical data

Function	Range	Accuracy
Tunction	range	Accuracy
	1	
Operate range	40 - 70 Hz	30 mHz
Effective range	45 - 55 Hz / 55 - 65 Hz	2 mHz
Operate time		min 140 ms
Time delay	140 – 60000 ms	± 20 ms
Reset ratio		0,99

Table 82 Technical data of the under-frequency protection function

Parameters

Enumerated parameter

Parameter name	Title	Selection range	Default	
Selection of the operating mode				
TUF81_Oper_EPar_	Operation	Off, On	On	

Table 83 The enumerated parameter of the under-frequency protection function

Boolean parameter

Parameter name	Title	Default
Enabling start signal only:		
TUF81_StOnly_BPar_	Start Signal Only	FALSE

Table 84 The boolean parameter of the under-frequency protection function

Float point parameter

Trout point parameter						
Parameter name	Title	Unit	Min	Max	Digits	Default
Preset value of the comparison						
TUF81_St_FPar_	Start Frequency	Hz	40	60	0.01	49

Table 85 The float point parameter of the under-frequency protection function

Parameter name	Title	Unit	Min	Max	Step	Default
Time delay						
TUF81_Del_TPar_	Time Delay	ms	100	60000	1	200

Table 86 The timer parameter of the under-frequency protection function

1.3.1.17 Rate of change of frequency protection function (FRC81)

The deviation of the frequency from the rated system frequency indicates unbalance between the generated power and the load demand. If the available generation is large compared to the consumption by the load connected to the power system, then the system frequency is above the rated value, and if it is small, the frequency is below the rated value. If the unbalance is large, then the frequency changes rapidly. The rate of change of frequency protection function is usually applied to reset the balance between generation and consumption to control the system frequency.

Another possible application is the detection of unintended island operation of distributed generation and some consumers. In the island, there is low probability that the power generated is the same as consumption; accordingly, the detection of a high rate of change of frequency can be an indication of island operation.

Accurate frequency measurement is also the criterion for the synchro-switch function.

The source for the rate of change of frequency calculation is an accurate frequency measurement.

In some applications, the frequency is measured based on the weighted sum of the phase voltages.

The accurate frequency measurement is performed by measuring the time period between two rising edges at zero crossing of a voltage signal. For the acceptance of the measured frequency, at least four subsequent identical measurements are needed. Similarly, four invalid measurements are needed to reset the measured frequency to zero. The basic criterion is that the evaluated voltage should be above 30% of the rated voltage value.

The rate of change of frequency protection function generates a start signal if the df/dt value is above the setting value. The rate of change of frequency is calculated as the difference of the frequency at the present sampling and at three periods earlier.

Time delay can also be set.

The function can be enabled/disabled by a parameter.

The rate of change of frequency protection function has a binary input signal. The conditions of the input signal are defined by the user, applying the graphic equation editor. The signal can block the rate of change of frequency protection function.

Technical data

Function	Effective range	Accuracy
Operating range	-50.05 and +0.05 - +5 Hz/sec	
Pick-up accuracy		±20 mHz/sec
Operate time	min 140 ms	
Time delay	140 – 60000 ms	<u>+</u> 20 ms

Table 87 Technical data of the rate of change of frequency protection function

Parameters

Enumerated parameter

Parameter name	Title	Selection range	Default		
Selection of the operating mode					
FRC81_Oper_EPar_	Operation	Off,On	On		

Table 88 The enumerated parameter of the rate of change of frequency protection function

Boolean parameter

200:04:: pa:4:::010:		
Parameter name Title		Default
Enabling start signal only:		
FRC81 StOnly BPar	Start Signal Only	True

Table 89 The boolean parameter of the rate of change of frequency protection function

Float point parameter

Parameter name	Title	Unit	Min	Max	Step	Default
Setting value of the compar	ison					
FRC81_St_FPar_	Start df/dt	Hz/sec	-5	5	0.01	0.5

Table 90 The float point parameter of the rate of change of frequency protection function

Parameter name	Title	Unit	Min	Max	Step	Default
Time delay						
FRC81_Del_TPar_	Time Delay	msec	100	60000	1	200

Table 91 The timer parameter of the rate of change of frequency protection function

1.3.1.18 Auto-reclose protection (REC79MV)

The MV automatic reclosing function can realize up to four shots of reclosing for medium-voltage networks. The dead time can be set individually for each reclosing and separately for earth faults and for multi-phase faults. All shots are of three phase reclosing.

The starting signal of the cycles can be generated by any combination of the protection functions or external signals of the binary inputs.

The automatic reclosing function is triggered if as a consequence of a fault a protection function generates a trip command to the circuit breaker and the protection function resets because the fault current drops to zero or the circuit breaker's auxiliary contact signals open state. According to the preset parameter values, either of these two conditions starts counting the dead time, at the end of which the MV automatic reclosing function generates a close command automatically. If the fault still exits or reappears, then within the "Reclaim time" the protection functions picks up again and the subsequent cycle is started. If the fault still exists at the end of the last cycle, the MV automatic reclosing function trips and generates the signal for final trip. If no pickup is detected within this time, then the MV automatic reclosing cycle resets and a new fault will start the procedure with the first cycle again.

At the moment of generating the close command, the circuit breaker must be ready for operation, which is signaled via the binary input "CB Ready". The preset parameter value "CB Supervision time" decides how long the MV automatic reclosing function is allowed to wait at the end of the dead time for this signal. If the signal is not received during this dead time extension, then the MV automatic reclosing function terminates.

Depending on binary parameter settings, the automatic reclosing function block can accelerate trip commands of the individual reclosing cycles. This function needs user-programmed graphic equations to generate the accelerated trip command.

The duration of the close command depends on preset parameter value "Close command time", but the close command terminates if any of the protection functions issues a trip command.

The MV automatic reclosing function can control up to four reclosing cycles. Depending on the preset parameter values "EarthFaults Rec,Cycle" and "PhaseFaults Rec,Cycle", there are different modes of operation, both for earth faults and for multi-phase faults:

Disabled No automatic reclosing is selected.

Enabled Only one automatic reclosing cycle is selected,
 Enabled Two automatic reclosing cycles are activated,
 Enabled Three automatic reclosing cycles are activated,
 All automatic reclosing cycles are activated.

The function can be switched Off /On using the parameter "Operation".

The user can also block the MV automatic reclosing function applying the graphic equation editor. The binary status variable to be programmed is "Block".

Depending on the preset parameter value "Reclosing started by", the MV automatic reclosing function can be started either by resetting of the TRIP command or by the binary signal indicating the open state of the circuit breaker.

If the reset state of the TRIP command is selected to start the MV automatic reclosing function, then the conditions are defined by the user applying the graphic equation editor. The binary status variable to be programmed is "AutoReclosing Start".

If the open state of the circuit breaker is selected to start the MV automatic reclosing function, then additionally to programming the "AutoReclosing Start" signal, the conditions for detecting the open state of the CB are defined by the user applying the graphic equation editor.

For all four reclosing cycles, separate dead times can be defined for line-to-line faults and for earth faults. The dead time counter of any reclosing cycle is started by the starting signal but starting can be delayed.

Reclosing is possible only if the conditions required by the "synchro-check" function are fulfilled. The conditions are defined by the user applying the graphic equation editor. The HV automatic reclosing function waits for a pre-programmed time for this signal. This time is defined by the user. If the "SYNC Release" signal is not received during the running time of this timer, then the "synchronous switch" operation is started. If no synchronous switching is possible, then the MV automatic reclosing function resets.

In case of a manual close command which is assigned to the binary input "Manual Close" using graphic equation programming, a preset parameter value decides how long the MV automatic reclosing function should be disabled after the manual close command.

The MV automatic reclosing function can be blocked by a binary input. The conditions are defined by the user applying the graphic equation editor.

Technical data

Function	Accuracy
Operating time	±1% of setting value or ±30 ms

Table 92 Technical data of the auto-reclosing protection function

Parameters

Enumerated parameters

Parameter name	Title	Selection range	Default	
Switching ON/OFF the MV	automatic red	closing function		
REC79_Op_EPar_	Operation	Off, On	On	
Selection of the number of reclosing sequences in case of earth faults				
REC79_EFCycEn_EPar	EarthFault	Disabled, 1. Enabled, 1.2. Enabled,	1. Enabled	
_	RecCycle	1.2.3. Enabled, 1.2.3.4. Enabled	1. Lilabieu	
Selection of the number of	reclosing seq	uences in case of line-to-line faults		
REC79_PhFCycEn_EPa	PhaseFault	Disabled, 1. Enabled, 1.2. Enabled,	1. Enabled	
<u>r_</u>	RecCycle	1.2.3. Enabled, 1.2.3.4. Enabled	1. Ellableu	
Selection of triggering the dead time counter (trip signal reset or circuit breaker open position)				
REC79_St_EPar_	Reclosing Started by	Trip reset, CB open	Trip reset	

Table 93 The enumerated parameters of the auto-reclosing protection function

Timer parameters

Timer parameters						
Parameter name	Title	Unit	Min	Max	Ste	Defaul
					р	t
	first reclosing cycle for line	to-line fau				
REC79_PhDT1_TPar_	1. Dead Time Ph	msec	0	100000	10	500
Dead time setting for the	second reclosing cycle for	line-to-line	fault			
REC79_PhDT2_TPar_	2. Dead Time Ph	msec	10	100000	10	600
Dead time setting for the	third reclosing cycle for line	to-line fa	ult			
REC79_PhDT3_TPar_	3. Dead Time Ph	msec	10	100000	10	700
Dead time setting for the	fourth reclosing cycle for lir	ne-to-line f	ault			
REC79_PhDT4_TPar_	4. Dead Time Ph	msec	10	100000	10	800
Dead time setting for the	first reclosing cycle for eart	h fault				
REC79_EFDT1_TPar_	1. Dead Time EF	msec	0	100000	10	1000
Dead time setting for the	second reclosing cycle for	earth fault				<u> </u>
REC79 EF DT2 TPar		msec	10	100000	10	2000
Dead time setting for the	third reclosing cycle for ear	th fault				
REC79 EF DT3 TPar	3. Dead Time EF	msec	10	100000	10	3000
Dead time setting for the	fourth reclosing cycle for ea	arth fault		l .		
REC79 EF DT4 TPar	4. Dead Time EF	msec	10	100000	10	4000
Reclaim time setting				l		
REC79 Rec TPar	Reclaim Time	msec	100	100000	10	2000
Impulse duration setting f	or the CLOSE command	<u> </u>				
REC79 Close TPar	Close Command Time	msec	10	10000	10	100
Setting of the dynamic blo	ocking time		•			
REC79 DynBlk TPar	Dynamic Blocking Time	msec	10	100000	10	1500
	ne after manual close comm	nand				
REC79 MC TPar	Block after Man Close	msec	0	100000	10	1000
Setting of the action time	(max. allowable duration b	etween pr	otectio		trip)	•
REC79 Act TPar	Action Time	msec	0	20000	10	1000
	signal (trip command is too	long or th	e CB o	pen signal	receiv	ed too
late)		J				
REĆ79_MaxSt_TPar_	Start Signal Max Time	msec	0	10000	10	1000
Max. delaying the start of	the dead-time counter	•				•
REC79 DtDel TPar	DeadTime Max Delay	msec	0	100000	10	3000
Waiting time for circuit bre	eaker ready to close signal		•			
REC79 CBTO TPar	CB Supervision Time	msec	10	100000	10	1000
Waiting time for synchron		1		1		1
REC79_SYN1_TPar_	SynCheck Max Time	msec	500	100000	10	10000
Waiting time for synchron	,	•			t.	
REC79 SYN2 TPar	SynSW Max Time	msec	500	100000	10	10000

Table 94 The timer parameters of the auto-reclosing protection function

Boolean parameters

Parameter name	Title	Default	Explanation
REC79_CBState_BPar_	CB State Monitoring	0	Enable CB state monitoring for "Not Ready" state
REC79_Acc1_BPar_	Accelerate 1.Trip	0	Accelerate trip command at starting cycle 1
REC79_Acc2_BPar_	Accelerate 2.Trip	0	Accelerate trip command at starting cycle 2
REC79_Acc3_BPar_	Accelerate 3.Trip	0	Accelerate trip command at starting cycle 3
REC79_Acc4_BPar_	Accelerate 4.Trip	0	Accelerate trip command at starting cycle 4
REC79_Acc5_BPar_	Accelerate FinTrip	0	Accelerate final trip command

Table 95 The boolean parameters of the auto-reclosing protection function

1.3.1.19 Voltage transformer supervision function (VTS60)

The voltage transformer supervision function generates a signal to indicate an error in the voltage transformer secondary circuit. This signal can serve, for example, as a warning, indicating disturbances in the measurement, or it can disable the operation of the distance protection function if appropriate measured voltage signals are not available for a distance decision.

The voltage transformer supervision function is designed to detect faulty asymmetrical states of the voltage transformer circuit caused, for example, by a broken conductor in the secondary circuit.

(Another method for detecting voltage disturbances is the supervision of the auxiliary contacts of the miniature circuit breakers in the voltage transformer secondary circuits. This function is not described here.)

The user has to generate graphic equations for the application of the signal of this voltage transformer supervision function.

This function is interconnected with the "dead line detection function". Although the dead line detection function is described fully in a separate document, the explanation necessary to understand the operation of the VT supervision function is repeated also in this document.

The voltage transformer supervision function can be used in three different modes of application:

<u>Zero sequence detection</u> (for typical applications in systems with grounded neutral): "VT failure" signal is generated if the residual voltage (3Uo) is above the preset voltage value AND the residual current (3Io) is below the preset current value.

<u>Negative sequence detection</u> (for typical applications in systems with isolated or resonant grounded (Petersen) neutral): "VT failure" signal is generated if the negative sequence voltage component (U2) is above the preset voltage value AND the negative sequence current component (I2) is below the preset current value.

<u>Special application</u>: "VT failure" signal is generated if the residual voltage (3Uo) is above the preset voltage value AND the residual current (3Io) AND the negative sequence current component (I2) are below the preset current values.

The voltage transformer supervision function can be activated if "Live line" status is detected for at least 200 ms. This delay avoids mal-operation at line energizing if the poles of the circuit breaker make contact with a time delay. The function is set to be inactive if "Dead line" status is detected.

If the conditions specified by the selected mode of operation are fulfilled (for at least 4 milliseconds) then the voltage transformer supervision function is activated and the operation signal is generated. (When evaluating this time delay, the natural operating time of the applied Fourier algorithm must also be considered.)

NOTE: For the operation of the voltage transformer supervision function the "Dead line detection function" must be operable as well: it must be enabled by binary parameter setting, and its blocking signal may not be active.

If, in the active state, the conditions for operation are no longer fulfilled, the resetting of the function depends on the mode of operation of the primary circuit:

- If the "Live line" state is valid, then the function resets after approx. 200 ms of time delay. (When evaluating this time delay, the natural operating time of the applied Fourier algorithm must also be considered.)
- If the "Dead line" state is started and the "VTS Failure" signal has been continuous for at least 100 ms, then the "VTS failure" signal does not reset; it is generated continuously even when the line is in a disconnected state. Thus, the "VTS Failure" signal remains active at reclosing.
- If the "Dead line" state is started and the "VTS Failure" signal has not been continuous for at least 100 ms, then the "VTS failure" signal resets.

Technical data

Function	Value	Accuracy
Pick-up voltage		
Io=0A		<1%
I2=0A		<1%
Operation time	<20ms	
Reset ratio	0.95	

Table 96 Technical data of the voltage transformer supervision function

Parameters

Integer parameters

Parameter name	Title	Unit	Min	Max	Step	Default
Integer parameters of the	dead line detection function	on				
DLD_ULev_IPar_	Min Operate Voltage	%	10	100	1	60
DLD_ILev_IPar_	Min Operate Current	%	2	100	1	10
Starting voltage and curre	ent parameter for residual	and nega	tive seq	uence d	etection	:
VTS_Uo_IPar_	Start URes	%	5	50	1	30
VTS_lo_lPar_	Start IRes	%	10	50	1	10
VTS_Uneg_IPar_	Start UNeg	%	5	50	1	10
VTS_Ineg_IPar_	Start INeg	%	10	50	1	10

Table 97 The integer parameters of the voltage transformer supervision function

Enumerated parameter

=ao.a.coa paramoto.			
Parameter name	Title	Selection range	Default
Parameter for type selection	on		
VTS Oper EPar	Operation	Off, Zero sequence, Neg. sequence,	Zero
VIO_OPCI_LI AI_	Operation	Special	sequence

Table 98 The enumerated parameter of the voltage transformer supervision function

1.3.1.20 Current unbalance function (VCB60)

The current unbalance protection function (VCB60) can be applied to detect unexpected asymmetry in current measurement.

The applied method selects maximum and minimum phase currents (RMS value of the fundamental Fourier components). If the difference between them is above the setting limit, the function generates a start signal. It is a necessary precondition of start signal generation that the maximum of the currents be above 10 % of the rated current and below 150% of the rated current.

The Fourier calculation modules calculate the RMS value of the basic Fourier current components of the phase currents individually. They are not part of the VCB60 function; they belong to the preparatory phase.

The analog signal processing module processes the RMS value of the basic Fourier current components of the phase currents to prepare the signals for the decision. It calculates the maximum and the minimum value of the RMS values and the difference between the maximum and minimum of the RMS values of the fundamental Fourier components of the phase currents as a percentage of the maximum of these values (Δ I>). If the maximum of the currents is above 10 % of the rated current and below 150% of the rated current and the Δ I> value is above the limit defined by the preset parameter (Start Current Diff) an output is generated to the decision module.

The decision logic module combines the status signals to generate the starting signal and the trip command of the function.

The trip command is generated after the defined time delay if trip command is enabled by the Boolean parameter setting.

The function can be disabled by parameter setting, and by an input signal programmed by the user with the graphic programming tool.

Technical data

Function	Value	Accuracy
Pick-up starting accuracy at In		< 2 %
Reset ratio	0.95	
Operate time	70 ms	

Table 99 Technical data of the current unbalance function

Parameters

Enumerated parameter

Parameter name	Title	Selection range	Default
Selection of the operating	mode		
VCB60_Oper_EPar_	Operation	Off, On	On

Table 100 The enumerated parameter of the current unbalance function

Boolean parameter

Parameter name	Title	Explanation	Default	
Selection for trip command				
VCB60_StOnly_BPar_	Start Signal Only	0 to generate trip command	0	

Table 101 The boolean parameter of the current unbalance function

Integer parameter

Parameter name	Title	Unit	Min	Max	Step	Default
Phase difference current se	etting					
VCB60_StCurr_IPar_	Start Current Diff	%	10	90	1	50

Table 102 The integer parameter of the current unbalance function

Parameter name	Title	Unit	Min	Max	Step	Default
Time delay						
VCB60_Del_TPar_	Time Delay	msec	100	60000	100	1000

Table 103 The timer parameter of the current unbalance function

1.3.1.21 Breaker failure protection function (BRF50)

After a protection function generates a trip command, it is expected that the circuit breaker opens and the fault current drops below the pre-defined normal level.

If not, then an additional trip command must be generated for all backup circuit breakers to clear the fault. At the same time, if required, a repeated trip command can be generated to the circuit breakers which are a priori expected to open.

The breaker failure protection function can be applied to perform this task.

The starting signal of the breaker failure protection function is usually the trip command of any other protection function assigned to the protected object. The user has the task to define these starting signals using the graphic equation editor, or if the operation of the individual phases is needed, then the start signals for the phases individually.

Two dedicated timers start at the rising edge of the start signals at the same time, one for the backup trip command and one for the repeated trip command, separately for operation in the individual phases. During the running time of the timers the function optionally monitors the currents, the closed state of the circuit breakers or both, according to the user's choice. The selection is made using an enumerated parameter.

If current supervision is selected by the user then the current limit values must be set correctly. The binary inputs indicating the status of the circuit breaker poles have no meaning.

If contact supervision is selected by the user then the current limit values have no meaning. The binary inputs indicating the status of the circuit breaker poles must be programmed correctly using the graphic equation editor.

If the parameter selection is "Current/Contact", the current parameters and the status signals must be set correctly. The breaker failure protection function resets only if all conditions for faultless state are fulfilled.

If at the end of the running time of the backup timer the currents do not drop below the predefined level, and/or the monitored circuit breaker is still in closed position, then a backup trip command is generated.

If repeated trip command is to be generated for the circuit breakers that are expected to open, then the enumerated parameter Retrip must be set to "On". In this case, at the end of the retrip timer(s) a repeated trip command is also generated in the phase(s) where the retrip timer(s) run off.

The pulse duration of the trip command is not shorter than the time defined by setting the parameter Pulse length.

The breaker failure protection function can be disabled by setting the enabling parameter to "Off".

Dynamic blocking (inhibition) is possible using the binary input Block. The conditions are to be programmed by the user, using the graphic equation editor.

Technical data

Function	Effective range	Accuracy	
Current accuracy		<2 %	
Retrip time	approx. 15 ms		
BF time accuracy		<u>+</u> 5 ms	
Current reset time	20 ms		

Table 104 Technical data of the breaker failure protection function

Parameters

Enumerated parameters

Parameter name	Title	Selection range	Default		
Selection of the operating mode					
BRF50_Oper_EPar_	Operation	Off, Current, Contact, Current/Contact	Current		
Switching on or off of the repeated trip command					
BRF50_ReTr_EPar_	Retrip	Off, On	On		

Table 105 The enumerated parameters of the breaker failure protection function

Integer parameters

Parameter name	Title	Unit	Min	Max	Step	Default
Phase current setting						
BRF50_StCurrPh_IPar_	Start Ph Current	%	20	200	1	30
Neutral current setting						
BRF50_StCurrN_IPar_	Start Res Current	%	10	200	1	20

Table 106 The integer parameters of the breaker failure protection function

Parameter name	Title	Unit	Min	Max	Step	Default
Time delay for repeated trip command generation						
BRF50_TrDel_TPar_	Retrip Time Delay	msec	0	10000	1	200
Time delay for trip command generation for the backup circuit breaker(s)						
BRF50_BUDel_TPar_	Backup Time Delay	msec	60	10000	1	300
Trip command impulse duration						
BRF50_Pulse_TPar_	Pulse Duration	msec	0	60000	1	100

Table 107 The timer parameters of the breaker failure protection function

1.3.1.22 Directional over-power protection function (DOP32)

The directional over-power protection function can be applied to protect any elements of the electric power system mainly generators if the active and/or reactive power has to be limited.

Technical data

Function	Effective range	Accuracy
P,Q measurement	I>5% In	<3%

Table 108 Technical data of the directional over-power protection function

Parameters

Enumerated parameter

Parameter name	arameter name Title Selection range		Default		
Switching on/off of the function					
DOP32_Oper_EPar_	Operation	Off,On	On		

Table 109 The enumerated parameter of the directional over-power protection function

Boolean parameter

Parameter name Title		Default		
Selection: start signal only or both start signal and trip command				
DOP32_StOnly_BPar_	Start Signal Only	0		

Table 110 The Boolean parameter of the directional over-power protection function

Integer parameter

Parameter name	Title	Unit	Min	Max	Step	Default
Direction angle						
DOP32_RCA_IPar_	Direction Angle	deg	-179	180	1	0

Table 111 Integer parameter of the directional over-power protection function

Float parameter

Parameter name	Title	Unit	Min	Max	Step	Default
Minimum power setting						
DOP32_StPow_FPar_	Start Power	%	1	200	0.1	10

Table 112 Float parameter of the directional over-power protection function

Parameter name	Title	Unit	Min	Max	Step	Default
Definite time delay of the trip command						
DOP32_Delay_TPar_	Time Delay	msec	0	60000	1	100

Table 113 Timer parameter of the directional over-power protection function

1.3.1.23 Directional under-power protection function (DUP32)

The directional under-power protection function can be applied mainly to protect any elements of the electric power system, mainly generators, if the active and/or reactive power has to be limited in respect of the allowed minimum power.

Technical data

Function	Effective range	Accuracy
P,Q measurement	I>5% In	<3%

Table 114 Technical data of the directional under-power protection function

Parameters

Enumerated parameter

Parameter name Title Selection range		Selection range	Default		
Switching on/off of the function					
DUP32_Oper_EPar_	Operation	Off, On	On		

Table 115 The enumerated parameter of the directional under-power protection function

Boolean parameter

Parameter name Title Default		Default			
Selection: start signal only or both start signal and trip command					
DUP32_StOnly_BPar_	Start Signal Only	0			

Table 116 The Boolean parameter of the directional under-power protection function

Integer parameter

Parameter name	Title	Unit	Min	Max	Step	Default
Direction angle						
DUP32_RCA_IPar_	Direction Angle	deg	-179	180	1	0

Table 117 Integer parameter of the directional under-power protection function

Float parameter

Parameter name	Title	Unit	Min	Max	Step	Default
Minimum power setting						
DUP32_StPow_FPar_	Start Power	%	1	200	0,1	10

Table 118 Float parameter of the directional under-power protection function

Parameter name	Title	Unit	Min	Max	Step	Default
Definite time delay of the trip command						
DUP32_Delay_TPar_	Time Delay	msec	0	60000	1	100

Table 119 Timer parameter of the directional under-power protection function

1.3.1.24 Trip logic (TRC94)

The simple trip logic function operates according to the functionality required by the IEC 61850 standard for the "Trip logic logical node". This simplified software module can be applied if only three-phase trip commands are required, that is, phase selectivity is not applied.

The function receives the trip requirements of the protective functions implemented in the device and combines the binary signals and parameters to the outputs of the device.

The trip requirements are programmed by the user, using the graphic equation editor. The aim of the decision logic is

 to define a minimal impulse duration even if the protection functions detect a very short-time fault.

•

Technical data

Function		Accuracy
Impulse time duration	Setting value	<3 ms

Table 120 Technical data of the simple trip logic function

Parameters

Enumerated parameter

Parameter name	Title	Selection range	Default
Selection of the operating mode			
TRC94_Oper_EPar_	Operation	Off, On	On

Tables 121 The enumerated parameter of the decision logic

Parameter name	Title	Unit	Min	Max	Step	Default
Minimum duration of the generated impulse						
TRC94_TrPu_TPar_	Min Pulse Duration	msec	50	60000	1	150

Table 122 Timer parameter of the decision logic

1.3.1.25 Dead line detection function (DLD)

The "Dead Line Detection" (DLD) function generates a signal indicating the dead or live state of the line. Additional signals are generated to indicate if the phase voltages and phase currents are above the pre-defined limits.

The task of the "Dead Line Detection" (DLD) function is to decide the Dead line/Live line state.

<u>Criteria of "Dead line" state</u>: all three phase voltages are below the voltage setting value AND all three currents are below the current setting value.

Criteria of "Live line" state: all three phase voltages are above the voltage setting value.

The details are described in the document **Dead line detection protection function block description.**

Technical data

Function	Value	Accuracy
Pick-up voltage		1%
Operation time	<20ms	
Reset ratio	0.95	

Table 123 Technical data of the dead line detection function

Parameters

Integer parameters

Parameter name	Title	Unit	Min	Max	Step	Default
Integer parameters of the dead line detection function						
DLD_ULev_IPar_	Min. Operate Voltage	%	10	100	1	60
DLD_ILev_IPar_	Min. Operate Current	%	2	100	1	10

Table 124 The integer parameters of the dead line detection function

1.3.1.26 Current input function (CT4)

If the factory configuration includes a current transformer hardware module, the current input function block is automatically configured among the software function blocks. Separate current input function blocks are assigned to each current transformer hardware module.

A current transformer hardware module is equipped with four special intermediate current transformers. (See Chapter 5 of the EuroProt+ hardware description document.) As usual, the first three current inputs receive the three phase currents (IL1, IL2, IL3), the fourth input is reserved for zero sequence current, for the zero sequence current of the parallel line or for any additional current. Accordingly, the first three inputs have common parameters while the fourth current input needs individual setting.

The role of the current input function block is to

- set the required parameters associated to the current inputs,
- deliver the sampled current values for disturbance recording,
- perform the basic calculations
 - Fourier basic harmonic magnitude and angle,
 - o True RMS value:
- provide the pre-calculated current values to the subsequent software modules,
- deliver the basic calculated values for on-line displaying.

Operation of the current input algorithm

The current input function block receives the sampled current values from the internal operating system. The scaling (even hardware scaling) depends on parameter setting. See parameters CT4_Ch13Nom_EPar_ (Rated Secondary I1-3) and CT4_Ch4Nom_EPar_ (Rated Secondary I4). The options to choose from are 1A or 5A (in special applications, 0.2A or 1A). This parameter influences the internal number format and, naturally, accuracy. (A small current is processed with finer resolution if 1A is selected.)

If needed, the phase currents can be inverted by setting the parameter CT4_Ch13Dir_EPar_ (Starpoint I1-3). This selection applies to each of the channels IL1, IL2 and IL3. The fourth current channel can be inverted by setting the parameter CT4_Ch4Dir_EPar (Direction I4). This inversion may be needed in protection functions such as distance protection, differential protection or for any functions with directional decision.

These sampled values are available for further processing and for disturbance recording.

The performed basic calculation results the Fourier basic harmonic magnitude and angle and the true RMS value. These results are processed by subsequent protection function blocks and they are available for on-line displaying as well.

The function block also provides parameters for setting the primary rated currents of the main current transformer. This function block does not need that parameter setting. These values are passed on to function blocks such as displaying primary measured values, primary power calculation, etc.

Technical data

Function	Range	Accuracy
Current accuracy	20 – 2000% of In	±1% of In

Table 125 Technical data of the current input

Parameters

Enumerated parameters

Parameter name	Title	Selection range	Default	
Rated secondary current of the first three input channels. 1A or 5A is selected by parameter setting, no hardware modification is needed.				
CT4_Ch13Nom_EPar_	Rated Secondary I1-3	1A,5A	1A	
Rated secondary current of the fourth input channel. 1A or 5A is selected by parameter setting, no hardware modification is needed.				
CT4_Ch4Nom_EPar_	Rated Secondary I4	1A,5A (0.2A or 1A)	1A	
Definition of the positive direction of the first three currents, given by location of the secondary star connection point				
CT4_Ch13Dir_EPar_	Starpoint I1-3	Line,Bus	Line	
Definition of the positive direction of the fourth current, given as normal or inverted				
CT4_Ch4Dir_EPar_	Direction I4	Normal,Inverted	Normal	

Table 126 The enumerated parameters of the current input function

Floating point parameters

riouting point paramotors				
Title	Dim.	Min	Max	Default
Rated primary current of channel1				
Rated Primary I1	Α	100	4000	1000
channel2				
Rated Primary I2	Α	100	4000	1000
Rated primary current of channel3				
Rated Primary I3	Α	100	4000	1000
Rated primary current of channel4				
Rated Primary I4	Α	100	4000	1000
	Title channel1 Rated Primary I1 channel2 Rated Primary I2 channel3 Rated Primary I3 channel4	Title Dim. Channel1 Rated Primary I1 A Channel2 Rated Primary I2 A Channel3 Rated Primary I3 A Channel4	Title Dim. Min Channel1 Rated Primary I1 A 100 Channel2 Rated Primary I2 A 100 Channel3 Rated Primary I3 A 100 Channel4	Title Dim. Min Max channel1 A 100 4000 channel2 Rated Primary I2 A 100 4000 channel3 Rated Primary I3 A 100 4000 channel4 A 100 4000

Table 127 The floating point parameters of the current input function

NOTE: The rated primary current of the channels is not needed for the current input function block itself. These values are passed on to the subsequent function blocks.

The measured values of the	current input function block.
-----------------------------------	-------------------------------

Measured value	Dim.	Explanation
Current Ch - I1	A(secondary)	Fourier basic component of the current in channel IL1
Angle Ch - I1	degree	Vector position of the current in channel IL1
Current Ch – I2	A(secondary)	Fourier basic component of the current in channel IL2
Angle Ch – I2	degree	Vector position of the current in channel IL2
Current Ch – I3	A(secondary)	Fourier basic component of the current in channel IL3
Angle Ch – I3	degree	Vector position of the current in channel IL3
Current Ch – I4	A(secondary)	Fourier basic component of the current in channel I4
Angle Ch – I4	degree	Vector position of the current in channel I4

Table 128 The measured analogue values of the current input function

NOTE1: The scaling of the Fourier basic component is such that if pure sinusoid 1A RMS of the rated frequency is injected, the displayed value is 1A. (The displayed value does not depend on the parameter setting values "Rated Secondary".)

NOTE2: The reference of the vector position depends on the device configuration. If a voltage input module is included, then the reference vector (vector with angle 0 degree) is the vector calculated for the first voltage input channel of the first applied voltage input module. If no voltage input module is configured, then the reference vector (vector with angle 0 degree)

is the vector calculated for the first current input channel of the first applied current input module.

Figure 7 shows an example of how the calculated Fourier components are displayed in the on-line block. (See the document "EuroProt+ Remote user interface description".)

Figure 7 Example: On-line displayed values for the current input module

1.3.1.27 Voltage input function (VT4)

If the factory configuration includes a voltage transformer hardware module, the voltage input function block is automatically configured among the software function blocks. Separate voltage input function blocks are assigned to each voltage transformer hardware module.

A voltage transformer hardware module is equipped with four special intermediate voltage transformers. (See Chapter 6 of the EuroProt+ hardware description document.) As usual, the first three voltage inputs receive the three phase voltages (UL1, UL2, UL3), the fourth input is reserved for zero sequence voltage or for a voltage from the other side of the circuit breaker for synchron switching. All inputs have a common parameter for type selection: 100V or 200V.

Additionally, there is a correction factor available if the rated secondary voltage of the main voltage transformer (e.g. 110V) does not match the rated input of the device.

The role of the voltage input function block is to

- set the required parameters associated to the voltage inputs,
- deliver the sampled voltage values for disturbance recording,
- perform the basic calculations
 - Fourier basic harmonic magnitude and angle,
 - True RMS value;
- provide the pre-calculated voltage values to the subsequent software modules,
- deliver the basic calculated values for on-line displaying.

Operation of the voltage input algorithm

The voltage input function block receives the sampled voltage values from the internal operating system. The scaling (even hardware scaling) depends on parameter setting. See the parameter VT4_Type_EPar_ (Range). The options to choose from are 100V or 200V. This parameter influences the internal number format and, naturally, accuracy. (A small voltage is processed with finer resolution if 100V is selected.)

The connection of the first three VT secondary winding must be set to reflect actual physical connection. The associated parameter is VT4_Ch13Nom_EPar_ (Connection U1-3). The selection can be: Ph-N, Ph-Ph or Ph-N-Isolated.

The Ph-N option is applied in solidly grounded networks, where the measured phase voltage is never above 1.5-Un. In this case the primary rated voltage of the VT must be the value of the rated PHASE-TO-NEUTRAL voltage.

The Ph-N option is applied in compensated or isolated networks, where the measured phase voltage can be above 1.5-Un even in normal operation. In this case the primary rated voltage of the VT must be the value of the rated PHASE-TO-PHASE voltage.

If phase-to-phase voltage is connected to the VT input of the device, then the Ph-Ph option is to be selected. Here, the primary rated voltage of the VT must be the value of the rated PHASE-TO-PHASE voltage. This option must not be selected if the distance protection function is supplied from the VT input.

The fourth input is reserved for zero sequence voltage or for a voltage from the other side of the circuit breaker for synchron switching. Accordingly, the connected voltage must be identified with parameter setting VT4_Ch4Nom_EPar_ (Connection U4). Here, phase-to-neutral or phase-to-phase voltage can be selected: Ph-N,Ph-Ph

If needed, the phase voltages can be inverted by setting the parameter VT4_Ch13Dir_EPar_ (Direction U1-3). This selection applies to each of the channels UL1, UL2 and UL3. The fourth voltage channel can be inverted by setting the parameter VT4_Ch4Dir_EPar_ (Direction U4). This inversion may be needed in protection functions such as distance protection, differential protection or for any functions with directional decision, or for checking the voltage vector positions.

Additionally, there is a correction factor available if the rated secondary voltage of the main voltage transformer (e.g. 110V) does not match the rated input of the device. The related parameter is VT4_CorrFact_IPar_ (VT correction). As an example: if the rated secondary voltage of the main voltage transformer is 110V, then select Type 100 for the parameter "Range" and the required value to set here is 110%.

These sampled values are available for further processing and for disturbance recording.

The performed basic calculation results the Fourier basic harmonic magnitude and angle and the true RMS value of the voltages. These results are processed by subsequent protection function blocks and they are available for on-line displaying as well.

The function block also provides parameters for setting the primary rated voltages of the main voltage transformer. This function block does not need that parameter setting. These values are passed on to function blocks such as displaying primary measured values, primary power calculation, etc. Concerning the rated voltage, see the instructions related to the parameter for the connection of the first three VT secondary winding.

Parameters

Enumerated parameters

Enumerated parameters						
Parameter name	Title	Selection range	Default			
Rated secondary voltage of the input channels. 100 V or 200V is selected by parameter setting, no hardware modification is needed.						
VT4_Type_EPar_	Range	Type 100, Type 200	Type 100			
Connection of the first three	ee voltage inputs (main VT s	econdary)				
VT4_Ch13Nom_EPar_	Connection U1-3	Ph-N, Ph-Ph, Ph-N-Isolated	Ph-N			
Selection of the fourth cha	annel input: phase-to-neutral	or phase-to-phase voltage	9			
VT4_Ch4Nom_EPar_	Connection U4	Ph-N,Ph-Ph	Ph-Ph			
Definition of the positive direction of the first three input channels, given as normal or inverted						
VT4_Ch13Dir_EPar_	Direction U1-3	Normal,Inverted	Normal			
Definition of the positive direction of the fourth voltage, given as normal or inverted						
VT4_Ch4Dir_EPar_	Direction U4	Normal,Inverted	Normal			

Table 129 The enumerated parameters of the voltage input function

Integer parameter

Parameter name	Title	Unit	Min	Max	Step	Default
Voltage correction						
VT4_CorrFact_IPar_	VT correction	%	100	115	1	100

Table 130 The integer parameter of the voltage input function

Floating point parameters

· · · · · · · · · · · · · · · · · · ·					
Parameter name	Title	Dim.	Min	Max	Default
Rated primary voltage of c	hannel1				
VT4_PriU1_FPar	Rated Primary U1	kV	1	1000	100
Rated primary voltage of c	Rated primary voltage of channel2				
VT4_PriU2_FPar	Rated Primary U2	kV	1	1000	100
Rated primary voltage of channel3					
VT4_PriU3_FPar	Rated Primary U3	kV	1	1000	100
Rated primary voltage of channel4					
VT4_PriU4_FPar	Rated Primary U4	kV	1	1000	100

Table 131 The floating point parameters of the voltage input function

NOTE: The rated primary voltage of the channels is not needed for the voltage input function block itself. These values are passed on to the subsequent function blocks.

Function	Range	Accuracy
Voltage accuracy	30% 130%	< 0, 5 %

Table 132 Technical data of the voltage input

Measured values

Measured value	Dim.	Explanation
Voltage Ch - U1	V(secondary)	Fourier basic component of the voltage in channel UL1
Angle Ch - U1	degree	Vector position of the voltage in channel UL1
Voltage Ch – U2	V(secondary)	Fourier basic component of the voltage in channel UL2
Angle Ch – U2	degree	Vector position of the voltage in channel UL2
Voltage Ch – U3	V(secondary)	Fourier basic component of the voltage in channel UL3
Angle Ch – U3	degree	Vector position of the voltage in channel UL3
Voltage Ch – U4	V(secondary)	Fourier basic component of the voltage in channel U4
Angle Ch – U4	degree	Vector position of the voltage in channel U4

Table 133 The measured analogue values of the voltage input function

NOTE1: The scaling of the Fourier basic component is such <u>if pure sinusoid 57V RMS</u> of the rated frequency is injected, the displayed value is 57V. (The displayed value does not depend on the parameter setting values "Rated Secondary".)

NOTE2: The reference vector (vector with angle 0 degree) is the vector calculated for the first voltage input channel of the first applied voltage input module.

The figure below shows an example of how the calculated Fourier components are displayed in the on-line block. (See the document EuroProt+ "Remote user interface description".)

Figure 8 Example: On-line displayed values for the voltage input module

1.3.1.28 Circuit breaker control function block (CB1Pol)

The Circuit breaker control function block can be used to integrate the circuit breaker control of the EuroProt+ device into the station control system and to apply active scheme screens of the local LCD of the device.

The Circuit breaker control function block receives remote commands from the SCADA system and local commands from the local LCD of the device, performs the prescribed checking and transmits the commands to the circuit breaker. It processes the status signals received from the circuit breaker and offers them to the status display of the local LCD and to the SCADA system.

Main features:

- Local (LCD of the device) and Remote (SCADA) operation modes can be enabled or disabled individually.
- The signals and commands of the synchro check / synchro switch function block can be integrated into the operation of the function block.
- Interlocking functions can be programmed by the user applying the inputs "EnaOff" (enabled trip command) and "EnaOn" (enabled close command), using the graphic equation editor.
- Programmed conditions can be used to temporarily disable the operation of the function block using the graphic equation editor.
- The function block supports the control models prescribed by the IEC 61850 standard.
- All necessary timing tasks are performed within the function block:
 - o Time limitation to execute a command
 - Command pulse duration
 - Filtering the intermediate state of the circuit breaker
 - Checking the synchro check and synchro switch times
 - Controlling the individual steps of the manual commands
- Sending trip and close commands to the circuit breaker (to be combined with the trip
 commands of the protection functions and with the close command of the automatic
 reclosing function; the protection functions and the automatic reclosing function
 directly gives commands to the CB). The combination is made graphically using the
 graphic equation editor
- Operation counter
- Event reporting

The Circuit breaker control function block has binary input signals. The conditions are defined by the user applying the graphic equation editor. The signals of the circuit breaker control are seen in the binary input status list.

Technical data

Function	Accuracy
Operate time accuracy	±5% or ±15 ms, whichever is greater

Table 134 Technical data of the circuit breaker control function

Parameters

Enumerated parameter

Parameter name	Title	tle Selection range		
The control model of the circuit breaker node according to the IEC 61850 standard				
CB1Pol_ctlMod_EPar_	ControlModel*	Direct normal, Direct enhanced, SBO enhanced	Direct normal	

*ControlModel

- Direct normal: only command transmission
- Direct enhanced: command transmission with status check and command supervision
- SBO enhanced: Select Before Operate mode with status check and command supervision

Table 135 Enumerated parameter of the circuit breaker control function

Boolean parameter

Boolean parameter	Title	Explanation
CB1Pol_DisOverR_BPar_	Forced check	If true, then the check function cannot be neglected by the check attribute defined by the IEC 61850 standard

Table 136 Boolean parameter of the circuit breaker control function

Timer parameters						
Parameter name	Title	Unit	Min	Max	Step	Default
Timeout for signaling failed o	Timeout for signaling failed operation					
CB1Pol_TimOut_TPar_	Max.Operating time	msec	10	1000	1	200
Duration of the generated Or	n and Off impulse					
CB1Pol_Pulse_TPar_,	Pulse length	msec	50	500	1	100
Waiting time, at expiry interm	nediate state of the CB	is reported				
CB1Pol_MidPos_TPar_	Max.Intermediate time	msec	20	30000	1	100
	Length of the time period to wait for the conditions of the synchron state. After expiry of this time, the synchro switch procedure is initiated (see synchro check/ synchro switch function block description)					
CB1Pol_SynTimOut_TPar_	Max.SynChk time	msec	10	5000	1	1000
Length of the time period to wait for the synchro switch impulse (see synchro check/ synchro switch function block description). After this time the function resets, no switching is performed						
CB1Pol_SynSWTimOut_ TPar_	Max.SynSW time*	msec	0	60000	1	0
Duration of the waiting time between object selection and command selection. At timeout no command is performed						
CB1Pol_SBOTimeout_ TPar_	SBO Timeout	msec	1000	20000	1	5000

^{*} If this parameter is set to 0, then the "StartSW" output is not activated

Table 137 Timer parameters of the circuit breaker control function

Available internal status variable and command channel

To generate an active scheme on the local LCD, there is an internal status variable indicating the state of the circuit breaker. Different graphic symbols can be assigned to the values. (See Chapter 3.2 of the document "EuroCAP configuration tool for EuroProt+ devices").

Status variable	Title	Explanation
CB1Pol_stVal_lst_	Status	Can be: 0: Intermediate 1: Off
		2: On 3: Bad

The available control channel to be selected is:

Command channel	Title	Explanation
		Can be:
CB1Pol_Oper_Con_	Operation	On
		Off

Using this channel, the pushbuttons on the front panel of the device can be assigned to close or open the circuit breaker. These are the "Local commands".

1.3.1.29 Disconnector control function (DisConn)

The Disconnector control function block can be used to integrate the disconnector control of the EuroProt+ device into the station control system and to apply active scheme screens of the local LCD of the device.

The Disconnector control function block receives remote commands from the SCADA system and local commands from the local LCD of the device, performs the prescribed checking and transmits the commands to the disconnector. It processes the status signals received from the disconnector and offers them to the status display of the local LCD and to the SCADA system.

Main features:

- Local (LCD of the device) and Remote (SCADA) operation modes can be enabled or disabled individually.
- Interlocking functions can be programmed by the user applying the inputs "EnaOff" (enabled trip command) and "EnaOn" (enabled close command), using the graphic equation editor.
- Programmed conditions can be used to temporarily disable the operation of the function block using the graphic equation editor.
- The function block supports the control models prescribed by the IEC 61850 standard.
- All necessary timing tasks are performed within the function block:
 - Time limitation to execute a command
 - Command pulse duration
 - Filtering the intermediate state of the disconnector
 - Controlling the individual steps of the manual commands
- · Sending trip and close commands to the disconnector
- Operation counter
- Event reporting

The Disconnector control function block has binary input signals. The conditions are defined by the user applying the graphic equation editor. The signals of the disconnector control are seen in the binary input status list.

Technical data

Function	Accuracy
Operate time accuracy	±5% or ±15 ms, whichever is greater

Table 138 Technical data of the disconnector control function

Parameters

Enumerated parameters

Parameter name	Title	Selection range	Default		
The control model of the	The control model of the disconnector node according to the IEC 61850 standard				
DisConn_ctlMod_EPar_ ControlModel* Direct normal, Direct enhanced, SBO enhanced					
Type of switch					
DisConn_SwTyp_EPar_	Type of Switch	N/A,Load break, Disconnector, Earthing Switch, HS Earthing Switch	Disconnector		

*ControlModel

- Direct normal: only command transmission
- Direct enhanced: command transmission with status check and command supervision
- SBO enhanced: Select Before Operate mode with status check and command supervision

Table 139 Enumerated parameters of the disconnector control function

Boolean parameter

Boolean parameter	Title	Explanation
DisConn_DisOverR_BPar_	Forced check	If true, then the check function cannot be neglected by the check attribute defined by the IEC 61850 standard

Table 140 Boolean parameter of the disconnector control function

Timer parameters

Parameter name	Title	Unit	Min	Max	Step	Default
Timeout for signaling failed operation						
DisConn_TimOut_TPar_	Max.Operating time	msec	10	20000	1	1000
Duration of the generated Or	n and Off impulse					
DisConn_Pulse_TPar_	Pulse length	msec	50	30000	1	100
Waiting time, at expiry interm	nediate state of the disc	connector is	reporte	d		
DisConn_MidPos_TPar_	Max.Intermediate time	msec	20	30000	1	100
Duration of the waiting time between object selection and command selection. At timeout no command is performed						
DisConn_SBOTimeout_ TPar_	SBO Timeout	msec	1000	20000	1	5000

Table 141 Timer parameters of the disconnector control function

Available internal status variable and command channel

To generate an active scheme on the local LCD, there is an internal status variable indicating the state of the disconnector. Different graphic symbols can be assigned to the values. (See Chapter 3.2 of the document "EuroCAP configuration tool for EuroProt+ devices").

Status variable	Title	Explanation
		Can be:
		0: Intermediate
DisConn I_stVal_lst_	Status	1: Off
		2: On
		3:Bad

The available control channel to be selected is:

Command channel	Title	Explanation
		Can be:
DisConn _Oper_Con_	Operation	On
		Off

Using this channel, the pushbuttons on the front panel of the device can be assigned to close or open the disconnector. These are the "Local commands".

1.3.1.30 Line measurement function (MXU)

The measurement

The input values of the EuroProt+ devices are the secondary signals of the voltage transformers and those of the current transformers.

These signals are pre-processed by the "Voltage transformer input" function block and by the "Current transformer input" function block. These function blocks are described in separate documents. The pre-processed values include the Fourier basic harmonic phasors of the voltages and currents and the true RMS values. Additionally, it is in these function blocks that parameters are set concerning the voltage ratio of the primary voltage transformers and current ratio of the current transformers.

Based on the pre-processed values and the measured transformer parameters, the "Line measurement" function block calculates - depending on the hardware and software configuration - the primary RMS values of the voltages and currents and some additional values such as active and reactive power, symmetrical components of voltages and currents. These values are available as primary quantities and they can be displayed on the on-line screen of the device or on the remote user interface of the computers connected to the communication network and they are available for the SCADA system using the configured communication system.

Reporting the measured values and the changes

It is usual for the SCADA systems that they sample the measured and calculated values in regular time periods and additionally they receive the changed values as reports at the moment when any significant change is detected in the primary system. The "Line measurement" function block is able to perform such reporting for the SCADA system.

Operation of the line measurement function block

The inputs of the line measurement function are

- the Fourier components and true RMS values of the measured voltages and currents,
- · frequency measurement,
- parameters.

The outputs of the line measurement function are

- · displayed measured values,
- reports to the SCADA system.

NOTE: the scaling values are entered as parameter setting for the "Voltage transformer input" function block and for the "Current transformer input" function block.

The measured values

The **measured values** of the line measurement function depend on the hardware configuration. As an example, Table 142 shows the list of the measured values available in a configuration for solidly grounded networks.

Measured value	Explanation	
MXU_P_OLM_	Active Power – P (Fourier base harmonic value)	
MXU_Q_OLM_	Reactive Power – Q (Fourier base harmonic value)	
MXU_S_OLM_	Apparent Power – S (Fourier base harmonic value)	
MXU_I1_OLM_	Current L1	
MXU_I2_OLM_	Current L2	
MXU_I3_OLM_	Current L3	
MXU_U1_OLM_	Voltage L1	
MXU_U2_OLM_	Voltage L2	
MXU_U3_OLM_	Voltage L3	
MXU_U12_OLM_	Voltage L12	
MXU_U23_OLM_	Voltage L23	
MXU_U31_OLM_	Voltage L31	
MXU_f_OLM_	Frequency	

Table 142 Example: Measured values in a configuration for solidly grounded networks

Another example is Figure 9, where the measured values available are shown as on-line information in a configuration for compensated networks.

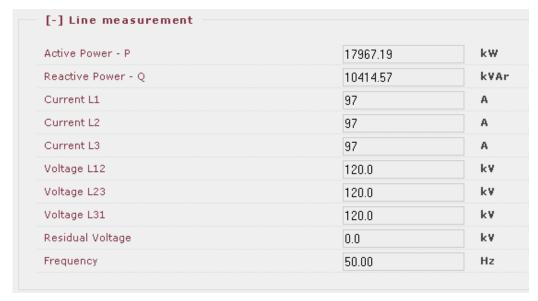


Figure 9 Example: Measured values in a configuration for compensated networks
The available quantities are described in the configuration description documents.

Reporting the measured values and the changes

For reporting, additional information is needed, which is defined in parameter setting. As an example, in a configuration for solidly grounded networks the following parameters are available:

Enumerated parameters

Parameter name	Title	Selection range	Default		
Selection of the reporting mode for active power measurement					
MXU_PRepMode_EPar_	Operation ActivePower	Off, Amplitude, Integrated	Amplitude		
Selection of the reporting n	node for reactive power meas	surement			
MXU_QRepMode_EPar_	Operation ActivePower	Off, Amplitude, Integrated	Amplitude		
Selection of the reporting n	node for apparent power mea	asurement			
MXU_SRepMode_EPar_	Operation ApparPower	Off, Amplitude, Integrated	Amplitude		
Selection of the reporting mode for current measurement					
MXU_IRepMode_EPar_	Operation Current	Off, Amplitude, Integrated	Amplitude		
Selection of the reporting n	node for voltage measureme	nt			
MXU_URepMode_EPar_	Operation Voltage	Off, Amplitude, Integrated	Amplitude		
Selection of the reporting mode for frequency measurement					
MXU_fRepMode_EPar_	Operation Frequency	Off, Amplitude, Integrated	Amplitude		

Table 143 The enumerated parameters of the line measurement function

The selection of the reporting mode items is explained in Figure 10 and in Figure 11.

"Amplitude" mode of reporting

If the "Amplitude" mode is selected for reporting, a report is generated if the measured value leaves the deadband around the previously reported value. As an example, Figure 10 shows that the current becomes higher than the value reported in "report1" PLUS the Deadband value, this results "report2", etc.

For this mode of operation, the Deadband parameters are explained in Table 144.

The "Range" parameters in Table 144 are needed to evaluate a measurement as "out-of-range".

Floating point parameters

Deadband value for the a MXU_PDeadB_FPar_Range value for the activ MXU_PRange_FPar_	Deadband value - P e power Range value - P	MW	Min 0.1	Max	Step	Default			
MXU_PDeadB_FPar_ Range value for the activ MXU_PRange_FPar_	Deadband value - P e power Range value - P	MW	0.1						
Range value for the activ MXU_PRange_FPar_	e power Range value - P	MW	0.1		Deadband value for the active power				
MXU_PRange_FPar_	Range value - P		•	100000	0.01	10			
			1						
		MW	1	100000	0.01	500			
Deadband value for the re									
MXU_QDeadB_FPar_	Deadband value - Q	MVAr	0.1	100000	0.01	10			
Range value for the react	tive power								
MXU_QRange_FPar_	Range value - Q	MVAr	1	100000	0.01	500			
Deadband value for the a	apparent power								
MXU_SDeadB_FPar_	Deadband value - S	MVA	0.1	100000	0.01	10			
Range value for the appa	arent power								
MXU_SRange_FPar_	Range value - S	MVA	1	100000	0.01	500			
Deadband value for the c	current								
MXU_IDeadB_FPar_	Deadband value - I	Α	1	2000	1	10			
Range value for the curre	ent					•			
MXU_IRange_FPar_	Range value - I	Α	1	5000	1	500			
Deadband value for the p	hase-to-neutral voltaç	ge							
	Deadband value – U ph-N	kV	0.1	100	0.01	1			
Range value for the phase-to-neutral voltage									
	Range value – U ph-N	kV	1	1000	0.1	231			
Deadband value for the p	hase-to-phase voltag	е							
	Deadband value – U ph-ph	kV	0.1	100	0.01	1			
Range value for the phase-to-phase voltage									
	Range value – U ph-ph	kV	1	1000	0.1	400			
Deadband value for the current									
MXU_fDeadB_FPar_	Deadband value - f	Hz	0.01	1	0.01	0.02			
Range value for the curre	ent								
MXU_fRange_FPar_	Range value - f	Hz	0.05	10	0.01	5			

Table 144 The floating-point parameters of the line measurement function

Amplitude

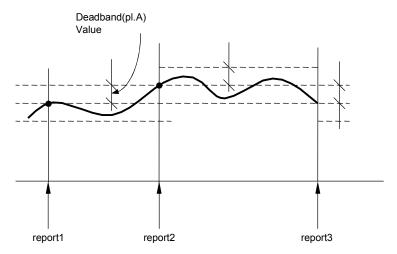


Figure 10 Reporting if "Amplitude" mode is selected

"Integral" mode of reporting

If the "Integrated" mode is selected for reporting, a report is generated if the time integral of the measured value since the last report gets becomes larger, in the positive or negative direction, then the (deadband*1sec) area. As an example, Figure 11 shows that the integral of the current in time becomes higher than the Deadband value multiplied by 1sec, this results "report2", etc.

Integrated

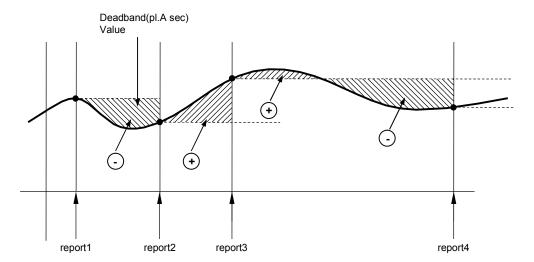


Figure 11 Reporting if "Integrated" mode is selected

Periodic reporting

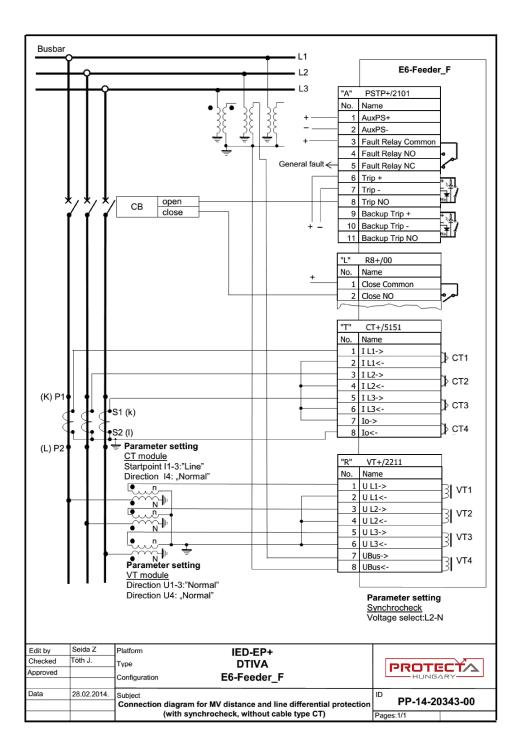
Periodic reporting is generated independently of the changes of the measured values when the defined time period elapses. The required parameter setting is shown in Table 145.

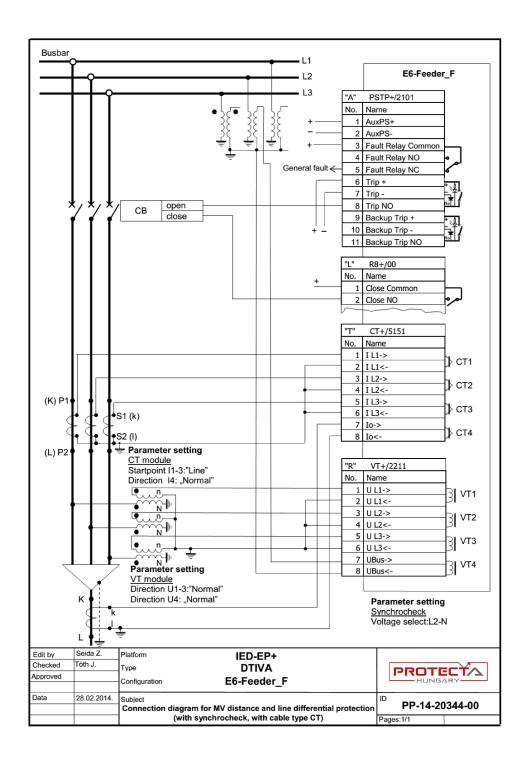
Integer parameters

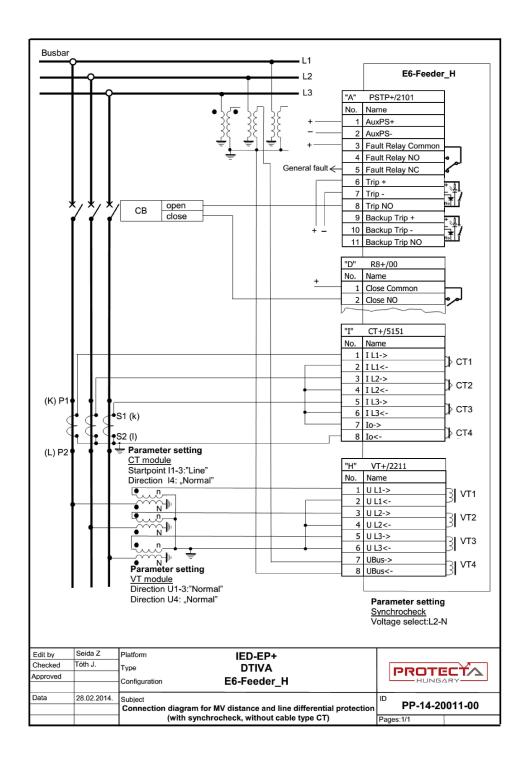
Parameter name	Title	Unit	Min	Max	Step	Default
Reporting time period for the active power						
MXU_PIntPer_IPar_	Report period P	sec	0	3600	1	0
Reporting time period for the rea	active power					
MXU_QIntPer_IPar_	Report period Q	sec	0	3600	1	0
Reporting time period for the ap	parent power					
MXU_SIntPer_IPar_	Report period S	sec	0	3600	1	0
Reporting time period for the vol	tage					
MXU_UIntPer_IPar_	Report period U	sec	0	3600	1	0
Reporting time period for the cui	Reporting time period for the current					
MXU_IIntPer_IPar_	Report period I	sec	0	3600	1	0
Reporting time period for the frequency						
MXU_fIntPer_IPar_	Report period f	sec	0	3600	1	0

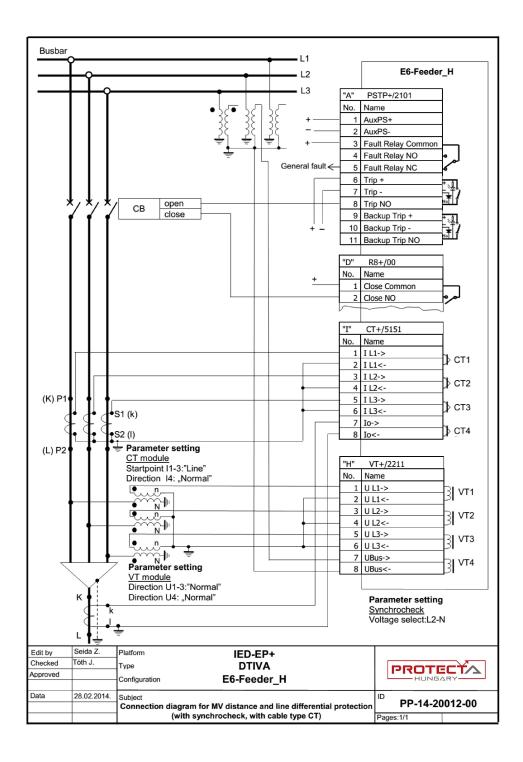
Table 145 The integer parameters of the line measurement function

If the reporting time period is set to 0, then no periodic reporting is performed for this quantity.


All reports can be disabled for a quantity if the reporting mode is set to "Off". See Table 143.


Technical data


Function	Range	Accuracy
Current accuracy		
with CT/5151 or CT/5102 modules	0,2 ln – 0,5 ln	±2%, ±1 digit
With C1/5151 of C1/5102 modules	0,5 ln – 20 ln	±1%, ±1 digit
with CT/1500 module	0,03 ln – 2 ln	±0,5%, ±1 digit
Voltage accuracy	5 – 150% of Un	±0.5% of Un, ±1 digit
Power accuracy	l>5% In	±3%, ±1 digit
Frequency accuracy	U>3.5%Un 45Hz – 55Hz	2mHz


Table 146 Technical data of line measurement

2 External connection

