

User's manual version information

Version	Date	Modification	Compiled by
Preliminary	16.09.2012	Preliminary version	
	24.09.2013	Corrected preliminary version	Tóth
V1.0	11.03.2014	First edition	Tóth
V2.0	09.07.2014	Modified: 2.3 Hardware configuration Added: 4 Hardware specification 5 General data	Tóth
V2.1	10.09.2014	5.2 Chapter: Mounting methods of IED EP+S24 added	Tóth
V2.2	22.09.2014	Modified: 2.1 Protection functions Renamed: Chapter 2.5.1 Added: Breaker failure protection function	Tóth
V2.3	18.02.2021.	Added: Directional over- and underpower functions	Erdős
V2.4	30.05.2023.	Modified: 5.3 Communication	Erdős

CONTENTS

1	IED-EP+ S24 overview	5
2	Configuration description	6
2	2.1 Protection functions	6
2	2.2 Measurement functions	7
2	2.3 Hardware configuration	8
4	2.3.1 The applied hardware modules	
2	2.4 Meeting the device	10
	2.5 Software configuration	
2	2.5 Software configuration	
	2.5.1.1 Three-phase instantaneous overcurrent protection function (IOC50)	.14
	2.5.1.2 Three-phase time overcurrent protection function (TOC51)	
	2.5.1.3 Three-phase directional overcurrent protection function (TOC67)	
	 2.5.1.4 Residual instantaneous overcurrent protection function (IOC50N) 2.5.1.5 Residual overcurrent protection function (TOC51N) 	
	2.5.1.6 Residual directional overcurrent protection function (TOC5TN)	
	2.5.1.7 Distance protection function (DIS21_MV)	
	2.5.1.8 Negative sequence overcurrent protection function (TOC46)	
	2.5.1.9 Inrush detection function (INR68)	
	2.5.1.10 Line thermal protection function (TTR49L)	
	2.5.1.11 Definite time overvoltage protection function (TOV59)	
	2.5.1.12 Definite time undervoltage protection function (TUV27)	
	2.5.1.13 Residual definite time overvoltage protection function (TOV59N)	
	 2.5.1.14 Over-frequency protection function (TOF81) 2.5.1.15 Underfrequency protection function (TUF81) 	
	2.5.1.16 Rate of change of frequency protection function (FRC81)	
	2.5.1.17 Directional overpower function (DOP32)	
	2.5.1.18 Directional underpower function (DUP32)	
	2.5.1.19 Auto-reclose protection (REC79MV)	
	2.5.1.20 Synchro check, synchro switch function	
	2.5.1.21 Dead line detection function (DLD)	
	 2.5.1.22 Voltage transformer supervision function (VTS60) 2.5.1.23 Current unbalance function (VCB60) 	
	2.5.1.25 Current unbalance function (VCB00) 2.5.1.24 Breaker failure protection function (BRF50MV)	
	2.5.1.25 Trip logic (TRC94)	
	2.5.1.26 Circuit breaker control function block (CB1Pol)	
	2.5.1.27 Disconnector control function (DisConn)	.71
	2.5.2 Measuring functions	
	2.5.2.1 Voltage input function (VT4)	
	2.5.2.2 Current input function (CT4)2.5.2.3 Line measurement function (MXU)	
	2.5.2.3 Line measurement function (MXU)2.5.3 Disturbance recorder	
	2.5.4 TRIP contact assignment	
~	2.6 LED assignment	
4		31
3	External connection	92
4	Hardware specification	93
2	4.1 System design	93
2	4.2 CPU module	93
	4.2.1 CPU+ module	93
	4.2.2 Module handling	
	4.2.3 Fast startup	94

4.2.	4 HMI and communication tasks	
4.3	Human-Machine Interface (HMI) module	
4.4	Detailed modules description	
5 Ger	neral data	
5.1	Mechanical data	
5.2	Mounting methods of IED EP+S24	
5.2.	1 Flush mounting of 24 HP panel instrument case	100
5.2.	2 Semi-flush mounting of 24 HP panel instrument case	102
5.2.	o 1	
5.3	Communication	104

1 IED-EP+ S24 overview

The IED EP+ S24 series is member of the *EuroProt+* product line, made by Protecta Co. Ltd. The *EuroProt+* type complex protection in respect of hardware and software is a modular device. The modules are assembled and configured according to the requirements, and then the software determines the functions. The IED EP+ S24 series is contain a special selection of the EuroProt+ modules, bearing in mind the cost effective realization.

The IEDs support a range of communication protocols including the IEC 61850 substation automation standard with horizontal GOOSE communication, IEC 60870-5-101, IEC 60870-5-103 and Modbus® RTU. The IED-EP+ S24 is available in six predefined standard configurations to suit the most common feeder protection and control applications.

The relay is provided with a built-in digital disturbance recorder for up to eight analog signal channels and 32 digital signal channels. The recordings are stored in a non-volatile memory from which data can be uploaded for subsequent fault analysis.

To provide network control and monitoring systems with feeder level event logs, the relay incorporates a non-volatile memory with capacity of storing 1000 event codes including time stamps. The non-volatile memory retains its data also in case the relay temporarily loses its auxiliary supply. The event log facilitates detailed pre- and post-fault analyses of feeder faults and distribution disturbances.

The trip circuit supervision continuously monitors the availability and operability of the trip circuit. It provides open circuit monitoring both when the circuit breaker is in its closed and in its open position.

The relay's built-in self-supervision system continuously monitors the state of the relay hardware and the operation of the relay software. Any fault or malfunction detected will be used for alerting the operator. When a permanent relay fault is detected the protection functions of the relay will be completely blocked to prevent any incorrect relay operation.

2 Configuration description

Variant 3 is used main protection for overhead lines and cable feeders in distribution networks with distance protection function. This chapter describes the specific application of the **Variant 3** factory configuration.

2.1 Protection functions

The **Variant 3** configuration measures three phase currents, the zero sequence current component and additionally three phase voltages and the zero sequence voltage component. These measurements allow, in addition to the current- and voltage-based functions, directionality extension of the configured phase and residual overcurrent function.

The main protection functions in this application: is the distance protection function. The distance protection function is a simplified version: it generates three-phase trip commands, but in case of cross-country faults it realizes also the phase preference logic. The choice of the functions is extended with the automatic reclosing function.

Based on the voltage measurement also the frequency is evaluated to realize frequencybased protection functions.

The configured protection functions are listed in the Table below.

Protection functions	IEC	ANSI	Variant 3
Three-phase instantaneous overcurrent protection	>>>	50	X
Three-phase time overcurrent protection	>, >>	51	Х
Three-phase directional overcurrent protection	I Dir > >, I Dir >>	67	Х
Residual instantaneous overcurrent protection	lo >>>	50N	Х
Residual time overcurrent protection	lo >, lo >>	51N	Х
Residual directional overcurrent protection	Io Dir > >, Io Dir >>	67N	Х
Distance protection	Ζ<	21	Х
Negative sequence overcurrent protection	l ₂ >	46	Х
Thermal protection	Τ>	49	Х
Inrush detection	l2h	68	Х
Definite time overvoltage protection	U >, U >>	59	Х
Definite time undervoltage protection	U <, U <<	27	Х
Residual overvoltage protection	Uo >, Uo >>	59N	Х
Negative sequence overvoltage protection	U ₂ >	47	Х
Overfrequency protection	f >, f >>	81O	Х
Underfrequency protection	f <, f <<	81U	Х
Rate of change of frequency protection	df/dt	81R	Х
Directional overpower protection	P >	32	Х
Directional underpower protection	P <	37	Х
Auto-reclose	0 - > 1	79	Х
Synchro check		25	X
Fuse failure (VTS)		60	Х
Current unbalance protection		60	X
Breaker failure protection	CBFP	50BF	X

Table 1 The protection functions of the Variant 3 configuration

The configured functions are drawn symbolically in the Figure below.

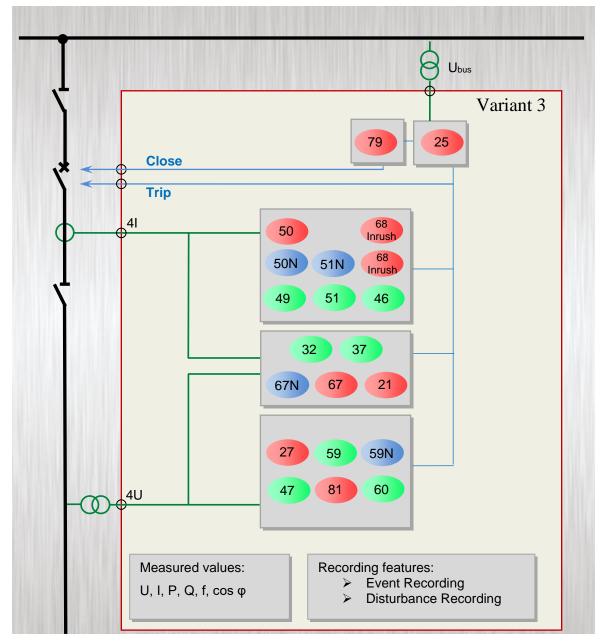


Figure 1 Implemented protection functions

2.2 Measurement functions

Based on the hardware inputs the measurements listed in Table below are available.

Measurement functions	Variant 3
Current (I1, I2, I3, Io)	X
Voltage (U1, U2, U3, U12, U23, U31, Uo, Useq) and frequency	X
Power (P, Q, S, pf)	X
Circuit breaker wear	X
Supervised trip contacts (TCS)	X

Table 2 The measurement functions of the Variant 3 configuration

2.3 Hardware configuration

Hardware configuration	Variant 3
Housing	Panel instrument enclosure (24 HP size)
Current inputs (4th channel can be sensitive)	4 (3x 1/5 A and 1x 1/5/0,2A)
Voltage inputs	4
Digital inputs	6 ¹
Digital outputs	5 ¹
Fast trip outputs ²	2 (4 A)
IRF contact	1

¹ as standard I/O card hardware configuration.

² By selecting AC operating voltage the PSTP+... module cannot be applied. In case the device produced with PSR2+... module.

Table 3 The basic hardware configuration of the Variant 3 configuration

IP ratings:

- IP20 protection from rear side
- IP54 protection from front side

The module arrangement of the Variant 3 configuration is shown below.

Slot: A	Slot: B	Slot: C	Slot: D	Slot: E	Slot: F
PSTP+ 2101	CT+ 5151	VT+ 2211			CPU+ 0007
	C13 C13	· · · · · · · · · · · · · · · · · · ·			COM A
BLA 2,3	BLA 12	BLA 8			

I/O card options for Variant 3:

IO card type	Slot D	Slot E
O6R5	Standard	N/A
O12	Option	Option
O8	Option	Option
R8	Option	Option

Figure 2 Module arrangement of the Variant 3 configuration (rear view)

Communication options for Variant 3:

Communication ports	No communication	Legacy protocols	IEC 61850	Redundant Ethernet
COM A	Standard	N/A	N/A	Option
COM B	Standard	Option	Option	N/A

2.3.1 The applied hardware modules

The applied modules are listed in Table 4.

The technical specification of the device and that of the modules are described in the document "*Hardware description*".

Module identifier	Explanation
PSTP+ xx01	Power supply unit with trip contacts
PSR2+ xx01	Power supply unit with 2xCO contacts
O6R5+ xx01	Binary I/O module
O12+ xx01	Binary input module
O8+ xx01	Binary input module
R8+ 00	Signal relay output module
CT+ 5151	Analog current input module
VT+ 2211	Analog voltage input module
CPU+ xxxx	Processing and communication module

Table 4 The applied modules of the Variant 3 configuration

2.4 Meeting the device

The basic information for working with the *EuroProt+* devices are described in the document "*Quick start guide to the devices of the EuroProt+ product line*".

Figure 3 IED EP+ S24 with B&W HMI front panel as standard

Figure 4 IED EP+S24 with true colour HMI front panel as optional

2.5 Software configuration

2.5.1 Protection and control functions

The implemented protection and control functions are listed in * The true color HMI is required to use the control functions

Table 5. The function blocks are described in details in separate documents. These are referred to also in this table.

The range of the parameter settings of the following function blocks can be modified, if it doesn't correspond to the costumer's request. In this case please, contact to the developer team on the Protecta Support Site: <u>http://buy.protecta.hu/support/</u>

Name	Title	Document
IOC50	3ph Instant.OC	Three-phase instantaneous overcurrent protection function block description
TOC51_low	3ph Overcurr	Three-phase overcurrent protection
TOC51_high		function block description
TOC67_low	3ph Dir.Overcurr	Directional three-phase overcurrent
TOC67_high		protection function block description
IOC50N	Residual Instant.OC	Residual instantaneous overcurrent
		protection function block description
TOC51N_low	Residual TOC	Residual overcurrent protection function
TOC51N_high		block description
TOC67N_low	Dir.Residual TOC	Directional residual overcurrent
TOC67N_high		protection function block description
DIS21_MV	5 zone MV distance	Distance protection function block
		description
TOC46	Neg. Seq. OC	Negative sequence overcurrent protection
	U	function block description
INR68	Inrush	Inrush detection and blocking
TTR49L	Thermal overload	Line thermal protection function block
		description
TOV59_high	Overvoltage	Definite time overvoltage protection
TOV59_low		function block description
TUV27_high	Undervoltage	Definite time undervoltage protection
TUV27_low		function block description
TOV59N_high	Res. Overvoltage	Residual definite time overvoltage
TOV59N_low		protection function block description
TOF81_high	Overfrequency	Overfrequency protection function block
TOF81_low		description
TUF81_high	Underfrequency	Underfrequency protection function block
TUF81_low		description
FRC81_high	ROC of frequency	Rate of change of frequency protection
FRC81_low		function block description
DOP32	OverPower	Directional overpower function
DUP32	UnderPower	Directional underpower function
REC79MV	MV autoreclosing	Automatic reclosing function for medium
	intradicioencenig	voltage networks, function block
		description
SYN25	Syncro Check	Synchro check
VTS60	Voltage transformer	Voltage transformer supervision function
	supervision	block description
VCB60	Current Unbalance	Current unbalance function block
		description
TRC94	Trip Logic	Trip logic function block description
DLD	Dead line detection	Dead line detection protection function
	Deau III e delection	

		block description
BRF50MV	Breaker failure	Breaker failure protection for not solidly grounded networks function block description
CT4		Current input function block description
VT4		Voltage input function block description
CB1Pol*		Circuit breaker control function block descrpition
DisConn*		Disconnector control function block descrpition
MXU		Line measurement function block descrpition

* The true color HMI is required to use the control functions

Table 5 Implemented protection and control functions

2.5.1.1 Three-phase instantaneous overcurrent protection function (IOC50)

The three-phase instantaneous overcurrent protection function (IOC50) operates immediately if the phase currents are higher than the setting value.

The setting value is a parameter, and it can be doubled by graphic programming of the dedicated input binary signal defined by the user.

The function is based on peak value selection or on the RMS values of the Fourier basic harmonic calculation, according to the parameter setting. The fundamental Fourier components are results of an external function block.

Parameter for type selection has selection range of Off, Peak value and Fundamental value. When Fourier calculation is selected then the accuracy of the operation is high, the operation time however is above one period of the network frequency. If the operation is based on peak values then fast sub-cycle operation can be expected, but the transient overreach can be high.

The function generates trip commands without additional time delay if the detected values are above the current setting value.

The function generates trip commands for the three phases individually and a general trip command as well.

The instantaneous overcurrent protection function has a binary input signal, which serves the purpose of disabling the function. The conditions of disabling are defined by the user, applying the graphic equation editor.

Function		Accuracy
Using	beak value calculation	
Operating characteristic	Instantaneous	<6%
Reset ratio	0.85	
Operate time at 2*Is	<15 ms	
Reset time *	< 40 ms	
Transient overreach	90 %	
Using Fourier	r basic harmonic calculat	ion
Operating characteristic	Instantaneous	<2%
Reset ratio	0.85	
Operate time at 2* Is	<25 ms	
Reset time *	< 60 ms	
Transient overreach	15 %	

Technical data

*Measured with signal contacts

Table 6 Technical data of the instantaneous overcurrent protection function

Parameters

Enumerated parameter								
Parameter name	Title	Selection range	Default					
Parameter for type selection								
IOC50_Oper_EPar_ Operation Off, Peak value, Fundamental va		Off, Peak value, Fundamental value	Peak value					
Table 7 The enumerated parameter of the instantaneous overcurrent protection								
function								

Integer parameter								
Parameter name	Title	Unit	Min	Max	Step	Default		
Starting current parameter:								
IOC50_StCurr_IPar_ Start Current % 20 3000 1 200								
	0 1 1					a •		

Table 8 The integer parameter of the instantaneous overcurrent protection function

2.5.1.2 Three-phase time overcurrent protection function (TOC51)

The overcurrent protection function realizes definite time or inverse time characteristics according to IEC or IEEE standards, based on three phase currents. The characteristics are harmonized with IEC 60255-151, Edition 1.0, 2009-08. This function can be applied as main protection for medium-voltage applications or backup or overload protection for high-voltage network elements.

The definite (independent) time characteristic has a fixed time delay when the current is above the starting current I_s previously set as a parameter.

The standard operating characteristics of the inverse time overcurrent protection function are defined by the following formula:

$$t(G) = TMS \left[\frac{k}{\left(\frac{G}{G_s}\right)^{\alpha} - 1} + c \right] \text{ when } G > G_s$$

where t(G)(seconds) k, c α G

theoretical operate time with constant value of G, constants characterizing the selected curve (in seconds), constants characterizing the selected curve (no dimension), measured value of the characteristic quantity, Fourier base harmonic of the phase currents (IL1Four, IL2Four, IL3Four), preset value of the characteristic quantity (Start current), preset time multiplier (no dimension).

Gs	
TM	S

	IEC ref	Title	kr	c	α
1	А	IEC Inv	0,14	0	0,02
2	В	IEC VeryInv	13,5	0	1
3	С	IEC ExtInv	80	0	2
4		IEC LongInv	120	0	1
5		ANSI Inv	0,0086	0,0185	0,02
6	D	ANSI ModInv	0,0515	0,1140	0,02
7	Е	ANSI VeryInv	19,61	0,491	2
8	F	ANSI ExtInv	28,2	0,1217	2
9		ANSI LongInv	0,086	0,185	0,02
10		ANSI LongVeryInv	28,55	0,712	2
11		ANSI LongExtInv	64,07	0,250	2

The end of the effective range of the dependent time characteristics (G_D) is:

$$G_{\rm D} = 20 * G_{\rm S}$$

Ъ

Above this value the theoretical operating time is definite:

Г

$$t(G) = TMS \left[\frac{k}{\left(\frac{G_D}{G_S}\right)^{\alpha} - 1} + c \right] \text{ when } G > G_D = 20 * G_S$$

Additionally a minimum time delay can be defined by a dedicated parameter. This delay is valid if it is longer than t(G), defined by the formula above.

Resetting characteristics:

- for IEC type characteristics the resetting is after a fix time delay defined by TOC51_Reset_TPar_ (Reset delay),
- for ANSI types however according to the formula below:

$$t_r(G) = TMS \left[\frac{k_r}{1 - \left(\frac{G}{G_s}\right)^{\alpha}} \right]$$
 when $G < G_s$

where t _r (G)(seconds) k _r	theoretical reset time with constant value of G, constants characterizing the selected curve (in seconds),
α	constants characterizing the selected curve (no dimension),
G	measured value of the characteristic quantity, Fourier base harmonic of the phase currents,
Gs TMS	preset value of the characteristic quantity (Start current),
11/15	preset time multiplier (no dimension).

	IEC ref	Title	k _r	α
1	А	IEC Inv	Resetting after fix ti	me delay,
2	В	IEC VeryInv	according to preset	
3	С	IEC ExtInv	TOC51_Reset_TPa	ar_
4		IEC LongInv	"Reset delay"	
5		ANSI Inv	0,46	2
6	D	ANSI ModInv	4,85	2
7	Е	ANSI VeryInv	21,6	2
8	F	ANSI ExtInv	29,1	2
9		ANSI LongInv	4,6	2
10		ANSI LongVeryInv	13,46	2
11		ANSI LongExtInv	30	2

The binary output status signals of the three-phase overcurrent protection function are starting signals of the three phases individually, a general starting signal and a general trip command.

The overcurrent protection function has a binary input signal, which serves the purpose of disabling the function. The conditions of disabling are defined by the user, applying the graphic equation editor.

Technical data

Function	Value	Accuracy
Operating accuracy	$20 \le G_S \le 1000$	< 2 %
Operate time accuracy		±5% or ±15 ms, whichever is greater
Reset ratio	0,95	
Reset time * Dependent time char. Definite time char.	Approx 60 ms	< 2% or ±35 ms, whichever is greater
Transient overreach		< 2 %
Pickup time *	< 40 ms	
Overshot time Dependent time char. Definite time char.	30 ms 50 ms	
Influence of time varying value of the input current (IEC 60255-151)		< 4 %

* Measured with signal relay contact

Table 9 Technical data of of the instantaneous overcurrent protection function

Parameters

Parameter name	Title	Selection range	Default
Parameter for type sel	ection		
TOC51_Oper_EPar_	Operation	Off, DefinitTime, IEC Inv, IEC VeryInv, IEC ExtInv, IEC LongInv, ANSI Inv, ANSI ModInv, ANSI VeryInv, ANSI ExtInv, ANSI LongInv, ANSI LongVeryInv, ANSI LongExtInv	Definit Time

Table 10 The enumerated parameters of the time overcurrent protection function

Integer parameter

Parameter name	Title	Unit	Min	Max	Step	Default
Starting current parameter:						
TOC51_StCurr_IPar_	Start Current	%	20	1000	1	200

Table 11 The integer parameter of the time overcurrent protection function

Float point parameter

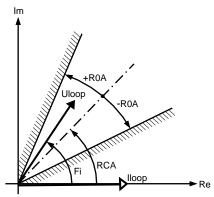
Parameter name	Title	Unit	Min	Max	Step	Default	
Time multiplier of the inverse characteristics (OC module)							
TOC51_Multip_FPar_	Time Multiplier	sec	0.05	999	0.01	1.0	
T 1 1 1 0 T 1 (1							

Table 12 The float point parameter of the time overcurrent protection function

Timer parameters							
Parameter name	Title	Unit	Min	Max	Step	Default	
Minimal time delay for the inverse characteristics:							
TOC51_MinDel_TPar_	Min Time Delay *	msec	0	60000	1	100	
Definite time delay:							
TOC51_DefDel_TPar_	Definite Time Delay **	msec	0	60000	1	100	
Reset time delay for the inverse characteristics:							
TOC51_Reset_TPar_ Reset Time* msec 0 60000 1 100						100	
*Valid for inverse type ch	aractoristics						

*Valid for inverse type characteristics

**Valid for definite type characteristics only


Table 13 The timer parameters of the time overcurrent protection function

2.5.1.3 Three-phase directional overcurrent protection function (TOC67)

The directional three-phase delayed overcurrent protection function can be applied on solidly grounded networks, where the overcurrent protection must be supplemented with a directional decision.

The inputs of the function are the Fourier basic harmonic components of the three phase currents and those of the three phase voltages and the three line-to-line voltages.

Based on the measured voltages and currents from among the six loops (L1L2, L2L3, L3L1, L1N, L2N, L3N), the function selects the one with the smallest calculated loop impedance. Based on the loop voltage and loop current of the selected loop, the directional decision generates a signal of TRUE value if the voltage and the current is sufficient for directional decision, and the angle difference between the vectors is within the setting range. This decision enables the output start and trip signal of a non-directional three-phase overcurrent protection function block, based on the selected current.

The function can be enabled or disabled by a parameter. The status signal of the VTS (voltage transformer supervision) function can also disable the directional operation.

The voltage must be above 5% of the rated voltage and the current must also be measurable.

If the voltages are below 5% of the rated voltage then the algorithm substitutes the small values with the voltages stored in the memory.

The directional decision module calculates the phase angle between the selected loop voltage and the loop current. The reference signal is the current according to *Figure*.

The three-phase non-directional delayed overcurrent function block (TOC51) is described in a separate document. The additional input binary signal enables the operation of the OC function if the directional decision module generates a logic TRUE value, indicating that the phase angle is in the range defined by the preset parameters or that non-directional operation is set by a parameter.

Function	Value	Accuracy
Operating accuracy		< 2 %
Operate time accuracy	If Time multiplier is >0.1	±5% or ±15 ms, whichever is greater
Accuracy in minimum time range		±35 ms
Reset ratio	0,95	
Reset time	Approx 100 ms	
Transient overreach	2 %	
Pickup time	<100 ms	
Memory storage time span		
50 Hz	70 ms	
60 Hz	60 ms	
Angular accuracy		<3°

Technical data

 Table 14 Technical data of the three-phase directional overcurrent protection

 function

Parameters

Enumerated parameters						
Parameter name	Title	Selection range	Default			
Directionality of the function						
TOC67_Dir_EPar_	Direction	NonDir, Forward, Backward	Forward			
Operating characteristic se	election of the	TOC51 module				
TOC67_Oper_EPar_	Operation	Off, DefiniteTime, IEC Inv, IEC VeryInv, IEC ExtInv, IEC LongInv, ANSI Inv, ANSI ModInv, ANSI VeryInv, ANSI ExtInv, ANSI LongInv, ANSI LongVeryInv, ANSI LongExtInv	DefiniteTime			

Table 15 The enumerated parameters of the three-phase directional overcurrentprotection function

Integer parameters							
Parameter name	Title	Unit	Min	Max	Step	Default	
Operating angle (see <i>Figure</i>)							
TOC67_ROA_IPar_	Operating Angle	deg	30	80	1	60	
Characteristic angle (see F	-igure)						
TOC67_RCA_IPar_ Characteristic Angle deg 40 90 1 60						60	
Start current (OC module)							
TOC67_StCurr_IPar_	Start Current	%	20	1000	1	50	

Table 16 The integer parameters of the three-phase directional overcurrent protection function

Float point parameter							
Parameter name Title Unit Min Max Digits Default							
Time multiplier of the inverse characteristics (OC module)							
TOC67_Multip_FPar_	Time Multiplier	sec	0.05	999	-2	1.0	

Table 17 The float point parameter of the three-phase directional overcurrentprotection function

Timer parameters							
Parameter name	Title	Unit	Min	Max	Step	Default	
Minimal time delay for the inverse characteristics (OC module):							
TOC67_MinDel_TPar_	Min. Time	msec	50	60000	1	100	
Definite time delay (OC mod	ule):						
TOC67_DefDel_TPar_	Definite Time	msec	0	60000	1	100	
Reset time delay for the inverse characteristics (OC module):							
TOC67_Reset_TPar_	Reset Time	msec	0	60000	1	100	

Table 18 The timer parameters of the three-phase directional overcurrent protectionfunction

2.5.1.4 Residual instantaneous overcurrent protection function (IOC50N)

The residual instantaneous overcurrent protection function (IOC50N) block operates immediately if the residual current (3lo) is above the setting value. The setting value is a parameter, and it can be doubled by a dedicated binary input signal defined by the user applying the graphic programming.

The function is based on peak value selection or on the RMS values of the Fourier basic harmonic component of the residual current, according to the parameter setting. The fundamental Fourier component calculation is not part of the IOC50N function.

Parameter for type selection has selection range of Off, Peak value and Fundamental value.

The function generates a trip commands without additional time delay if the detected values are above the current setting value.

The residual instantaneous overcurrent protection function has a binary input signal, which serves the purpose of disabling the function. The conditions of disabling are defined by the user, applying the graphic equation editor.

Function		Accuracy
Using	peak value calculation	-
Operating characteristic (I>0.1 In)	Instantaneous	<6%
Reset ratio	0.85	
Operate time at 2*Is	<15 ms	
Reset time *	< 35 ms	
Transient overreach	85 %	
Using Fouri	er basic harmonic calculatic	on
Operating characteristic (I>0.1 In)	Instantaneous	<3%
Reset ratio	0.85	
Operate time at 2*Is	<25 ms	
Reset time *	< 60 ms	
Transient overreach	15 %	

Technical data

*Measured with signal contacts

Table 19 Technical data of the residual instantaneous overcurrent protection function

Parameters Enumerated parameter						
Parameter name	Title	Selection range	Default			
Parameter for type selection						
IOC50N_Oper_EPar_	Operation	Off, Peak value, Fundamental value	Peak value			

Table 20 The enumerated parameter of the residual instantaneous overcurrentprotection function

Integer parameter

Parameter name	Title	Unit	Min	Max	Step	Default
Starting current parameter:						
IOC50N_StCurr_IPar_	Start Current	%	10	400	1	200

Table 21 The integer parameter of the residual instantaneous overcurrent protection function

2.5.1.5 Residual overcurrent protection function (TOC51N)

The residual delayed overcurrent protection function can realize definite time or inverse time characteristics according to IEC or IEEE standards, based on the RMS value of the fundamental Fourier component of a single measured current, which can be the measured residual current at the neutral point (3Io) or the calculated zero sequence current component. The characteristics are harmonized with IEC 60255-151, Edition 1.0, 2009-08.

The definite (independent) time characteristic has a fixed time delay when the current is above the starting current I_s previously set as a parameter.

The standard operating characteristics of the inverse time overcurrent protection function are defined by the following formula:

$$t(G) = TMS \left[\frac{k}{\left(\frac{G}{G_s}\right)^{\alpha} - 1} + c \right] \text{ when } G > G_s$$

where t(G)(seconds) k, c α G

theoretical operate time with constant value of G, constants characterizing the selected curve (in seconds), constant characterizing the selected curve (no dimension), measured value of the characteristic quantity, Fourier base harmonic of the residual current (INFour), preset value of the characteristic quantity (Start current),

Gs TMS

preset time multiplier (no dimension).

	IEC ref		k r	с	α
1	Α	IEC Inv	0,14	0	0,02
2	В	IEC VeryInv	13,5	0	1
3	С	IEC ExtInv	80	0	2
4		IEC LongInv	120	0	1
5		ANSI Inv	0,0086	0,0185	0,02
6	D	ANSI ModInv	0,0515	0,1140	0,02
7	Е	ANSI VeryInv	19,61	0,491	2
8	F	ANSI ExtInv	28,2	0,1217	2
9		ANSI LongInv	0,086	0,185	0,02
10		ANSI LongVeryInv	28,55	0,712	2
11		ANSI LongExtInv	64,07	0,250	2

The end of the effective range of the dependent time characteristics (G_D) is:

$$G_{\rm D} = 20 * G_{\rm S}$$

Above this value the theoretical operating time is definite:

$$t(G) = TMS \left[\frac{k}{\left(\frac{G_D}{G_S}\right)^{\alpha} - 1} + c \right] \text{ when } G > G_D = 20 * G_S$$

Additionally a minimum time delay can be defined by a dedicated parameter (Min. Time Delay). This delay is valid if it is longer than t(G), defined by the formula above.

Resetting characteristics:

- for IEC type characteristics the resetting is after a fix time delay,
- for ANSI types however according to the formula below:

$$t_r(G) = TMS \left[\frac{k_r}{1 - \left(\frac{G}{G_s}\right)^{\alpha}} \right] \text{ when } G < G_s$$

where tr(G)(seconds)

kr α G theoretical reset time with constant value of G, constants characterizing the selected curve (in seconds), constant characterizing the selected curve (no dimension), measured value of the characteristic quantity, Fourier base harmonic of the residual current, preset value of the characteristic quantity (Start current), preset time multiplier (no dimension).

Gs TMS

	IEC ref		k r	α
1	Α	IEC Inv	Resetting after fix	time delay,
2	В	IEC VeryInv	according to pres	et parameter
3	С	IEC ExtInv	TOC51_Rese	t_TPar_
4		IEC LongInv	"Reset de	elay"
5		ANSI Inv	0,46	2
6	D	ANSI ModInv	4,85	2
7	E	ANSI VeryInv	21,6	2
8	F	ANSI ExtInv	29,1	2
9		ANSI LongInv	4,6	2
10		ANSI LongVeryInv	13,46	2
11		ANSI LongExtInv	30	2

The binary output status signals of the residual overcurrent protection function are the general starting signal and the general trip command if the time delay determined by the characteristics expired.

The residual overcurrent protection function has a binary input signal, which serves the purpose of disabling the function. The conditions of disabling are defined by the user, applying the graphic equation editor.

Technical data				
Function	Value	Accuracy		
Operating accuracy *	20 ≤ G _S ≤ 1000	< 3 %		
Operate time accuracy		±5% or ±15 ms, whichever is greater		
Reset ratio	0,95			
Reset time * Dependent time char. Definite time char.	Approx 60 ms	< 2% or ±35 ms, whichever is greater		
Transient overreach		2 %		
Pickup time	≤ 40 ms			
Overshot time				
Dependent time char. Definite time char.	30 ms 50 ms			
Influence of time varying value of the input current (IEC 60255-151)		< 4 %		

* Measured in version In = 200 mA

Table 22 The technical data of the residual overcurrent protection function

Parameters

Enumerated parameters						
Parameter name	Title	Selection range	Default			
Parameter for type selection						
TOC51N_Oper_EPar_	Operation	Off, DefinitTime, IEC Inv, IEC VeryInv, IEC ExtInv, IEC LongInv, ANSI Inv, ANSI ModInv, ANSI VeryInv, ANSI ExtInv, ANSI LongInv, ANSI LongVeryInv, ANSI LongExtInv	Definite Time			

Table 23 The enumerated parameters of the residual overcurrent protection function

Integer parameter						
Parameter name	Title	Unit	Min	Max	Step	Default
Starting current paramete	r:					
TOC51N_StCurr_IPar_	Start Current *	%	5	200	1	50
TOC51N_StCurr_IPar_	Start Current **	%	10	1000	1	50
* In = 1 A or 5 A						

** In = 200 mA or 1 A

Table 24 The integer parameter of the residual overcurrent protection function

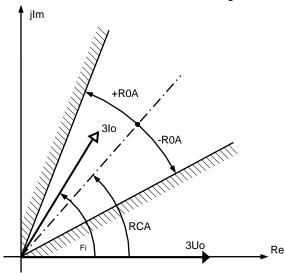
Float point parameter							
Parameter name	Title	Unit	Min	Max	Step	Default	
Time multiplier of the inverse characteristics (OC module)							
TOC51N_Multip_FPar_	Time Multiplier	sec	0.05	999	0.01	1.0	

Table 25 The float parameter of the residual overcurrent protection function

Timer parameters						
Parameter name	Title	Unit	Min	Max	Step	Default
Minimal time delay for the inverse characteristics:						
TOC51N_MinDel_TPar_	Min Time Delay*	msec	0	60000	1	100
Definite time delay:						
TOC51N_DefDel_TPar_	Definite Time Delay**	msec	0	60000	1	100
Reset time delay for the inverse characteristics:						
TOC51N_Reset_TPar_	Reset Time*	msec	0	60000	1	100
*Valid for inverse tures	hang at a mighting					

*Valid for inverse type characteristics

**Valid for definite type characteristics only


Table 26 The timer parameters of the residual overcurrent protection function

2.5.1.6 Residual directional overcurrent protection function (TOC67N)

The main application area of the directional residual delayed overcurrent protection function is an earth-fault protection.

The inputs of the function are the RMS value of the Fourier basic harmonic components of the zero sequence current (IN=3Io) and those of the zero sequence voltage (UN=3Uo).

The block of the directional decision generates a signal of TRUE value if the UN=3Uo zero

sequence voltage and the IN=300 Zero sequence voltage and the IN=310 zero sequence current are above the limits needed for correct directional decision, and the angle difference between the vectors is within the preset range. The decision enables the output start and trip signal of an overcurrent protection function block (TOC51N). This nondirectional residual overcurrent protection function block is described in a separate document.

The directional decision module calculates the phase angle between the residual voltage and the residual current. The reference signal is the residual voltage according to the *Figure*.

The output of the directional decision module is OK, namely it is TRUE if the phase angle between the residual voltage and the residual current is within the limit range defined by the preset parameter OR if non-directional operation is selected by the preset parameter (Direction=NonDir).

Function	Value	Accuracy
Operating accuracy		< ±2 %
Operate time accuracy		±5% or ±15 ms, whichever is greater
Accuracy in minimum time range		±35 ms
Reset ratio	0,95	
Reset time	Approx 50 ms	±35 ms
Transient overreach	<2 %	
Pickup time	25 – 30 ms	
Angular accuracy lo \leq 0.1 ln 0.1 ln < lo \leq 0.4 ln 0.4 ln < lo		< ±10° < ±5° < ±2°
Angular reset ratio Forward and backward All other selection	10° 5°	

Technical data

 Table 27 The technical data of the residual directional overcurrent protection

 function

Parameters

Enumerated parameters					
Parameter name	Title	Selection range	Default		
Directionality of the function					
TOC67N_Dir_EPar_	Direction	NonDir,Forward-Angle,Backward- Angle,Forward-I*cos(fi),Backward- I*cos(fi),Forward-I*sin(fi),Backward- I*sin(fi),Forward-I*sin(fi+45),Backward- I*sin(fi+45)	Forward- Angle		
Operating characteristic se	election of the	TOC51N module			
TOC67N_Oper_EPar_	Operation	Off,DefiniteTime,IEC Inv,IEC VeryInv,IEC ExtInv,IEC LongInv,ANSI Inv,ANSI ModInv,ANSI VeryInv,ANSI ExtInv,ANSI LongInv,ANSI LongVeryInv,ANSI LongExtInv	DefiniteTime		

Table 28 The enumerated parameters of the residual directional overcurrentprotection function

Short explanation of the enumerated parameter "Direction"

Selected value	Explanation			
NonDir,	Operation according to non-directional TOC51N			
Forward-Angle	See <i>Figure</i> , set RCA (Characteristic Angle) and ROA (Operating Angle) as required			
Backward-Angle	RCAactual=RCAset+180°, set RCA (Characteristic Angle) and ROA (Operating Angle) as required			
Forward-I*cos(fi)	RCA=0°fix, ROA=85°fix, the setting values RCA and ROA are not applied			
Backward-I*cos(fi)	RCA=180°fix, ROA=85°fix, the setting values RCA and ROA are not applied			
Forward-I*sin(fi)	RCA=90°fix, ROA=85°fix, the setting values RCA and ROA are not applied			
Backward-I*sin(fi)	RCA=-90°fix, ROA=85°fix, the setting values RCA and ROA are not applied			
Forward-I*sin(fi+45)	RCA=45°fix, ROA=85°fix, the setting values RCA and ROA are not applied			
Backward-I*sin(fi+45)	RCA=-135°fix, ROA=85°fix, the setting values RCA and ROA are not applied			

Table 29 The short explanation of the enumerated parameters of the residualdirectional overcurrent protection function

Integer parameters						
Parameter name	Title	Unit	Min	Max	Step	Default
The threshold value for the 3Uo zero sequence voltage, below which no directionality is possible.						
% of the rated voltage of the	e voltage transformer inp	ut				
TOC67N_UoMin_IPar_	URes Min	%	1	10	1	2
The threshold value for the	3lo zero sequence curre	nt, below w	hich no	operation	is possil	ole.
% of the rated current of the	e current transformer inpu	ut				
TOC67N_IoMin_IPar_	IRes Min	%	1	50	1	5
Operating angle (See Figur	re)					
TOC67N_ROA_IPar_	Operating Angle	deg	30	80	1	60
Characteristic angle (See F	-igure)					
TOC67N_RCA_IPar_	Characteristic Angle	deg	-180	180	1	60
Start current (TOC51N module)						
TOC67N_StCurr_IPar_	Start Current	%	5	200	1	50

 Table 30 The integer parameters of the residual directional overcurrent protection

 function

Float point parameter

Parameter name	Title	Unit	Min	Step	Step	Default
Time multiplier of the inverse characteristics (TOC51N module)						
TOC67N_Multip_FPar_	Time Multiplier	sec	0.05	999	0.01	1.0

Table 31 The float point parameter of the residual directional overcurrent protectionfunction

Timer parameters						
Parameter name	Title	Unit	Min	Max	Step	Default
Minimal time delay for the inverse characteristics (TOC 51N module):						
TOC67N_MinDel_TPar_	Min Time Delay	msec	50	60000	1	100
Definite time delay (TOC 5	Definite time delay (TOC 51N module):					
TOC67N_DefDel_TPar_	Definite Time Delay	msec	0	60000	1	100
Reset time delay for the inverse characteristics (TOC 51N module):						
TOC67N_Reset_TPar_	Reset Time	msec	0	60000	1	100

Table 32 The timer parameters of the residual directional overcurrent protection

function

2.5.1.7 Distance protection function (DIS21_MV)

The distance protection function provides main protection for overhead lines and cables of networks, the neutral of which is isolated or grounded via arc suppression coil (Petersen coil). The main features of the function are as follows:

- The selected algorithm fits the requirements of Petersen compensated networks or networks where the neutral point is not connected to the ground.
- A full-scheme system provides continuous measurement of impedance separately in three independent phase-to-phase measuring loops.
- Phase-to-phase impedance calculation is conditional of the values of phase currents being sufficient, and no considerable zero sequence current component is detected. The current is considered to be sufficient for impedance calculation if it is above the defined value. Similarly the zero sequence current must be below a level set by parameters.
- Full-scheme faulty phase identification by minimum impedance detection.
- For "cross-country-faults" phase preference can be defined by parameter setting.
- To decide the presence or absence of the "cross-country-faults", biased zero sequence current characteristics are applied.
- Five independent distance protection zones are configured.
- The operating decision is based on polygon-shaped characteristics.
- Load encroachment characteristics can be selected.
- The directional decision is dynamically based on:
 - o measured loop voltages if they are sufficient for decision,
 - o voltages stored in the memory if they are available,
- The operation of any zones can be directional or non-directional if it is optionally selected.
- The distance protection function can operate properly even in case CVT application.
- Non-directional impedance protection function or high speed OC protection function is applied in case of switch-onto-fault.
- Distance-to-fault evaluation is implemented (fault locator function).
 - Binary input signals and conditions can influence the operation:
 - o blocking/enabling
 - VT failure signal
- Integrated high-speed overcurrent back-up function is also implemented.

Operation for line-to-line faults

The distance protection supplied by PROTECTA Ltd. continuously measures the impedances in the three possible fault loops. The calculation is performed in the phase-to-phase loops based on the line-to-line voltages and the difference of the affected phase currents. These equations are summarized in Table 1 for different types of faults. The result of this calculation is the positive sequence impedance of the fault loop, including the positive sequence fault resistance at the fault location.

The condition of line-to-line fault decision is the absence of the zero sequence current component in the phase currents.

Fault	Calculation of Z	Other possible calculation
L1L2L3(N)	$Z_{L2L3} = \frac{U_{L2} - U_{L3}}{I_{L2} - I_{L3}}$	Z_{L1L2} , Z_{L2L3} , Z_{L3L1}
L1L2	$Z_{L1L2} = \frac{U_{L1} - U_{L2}}{I_{L1} - I_{L2}}$	
L2L3	$Z_{L2L3} = \frac{U_{L2} - U_{L3}}{I_{L2} - I_{L3}}$	
L3L1	$Z_{L3L1} = \frac{U_{L3} - U_{L1}}{I_{L3} - I_{L1}}$	

Table 33 Formulas for the calculation of the impedance to fault

The central column of Table 33 contains the correct formula for calculation. The formulas referred to in the right-hand-side column yield the same correct impedance value.

It can be proven that the appropriate application of the formulas in Table 33 will always yield the positive sequence impedance between the fault location and the relay location.

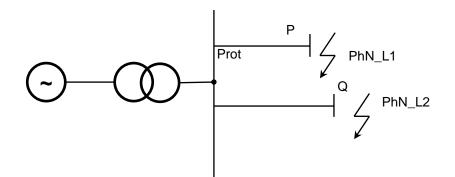
The algorithm continuously calculates the impedances of the three line-to-line fault loops, then the "SELECT" decision module selects the impedance for the trip decision.

Single-phase-to-ground faults

In case of single-phase-to-ground faults

- in isolated networks, only small capacitive current flows,
- in compensated networks the current is further decreased by the compensating effect of the Petersen (arc suppression) coil.

The distance protection function cannot be set to react to these small currents to avoid maloperation for normal load currents. The protection against ground fault is the task of other protection functions.


Operation for "cross-country-faults"

In case of single-phase-to-ground faults, the voltage of the involved phase becomes zero, but the voltages of the healthy phases on the entire galvanically connected network increase to the line-to-line value. This increased voltage increases the chance to ignite another additional ground fault anywhere on the network, resulting a "cross-country-fault". If the faults are located on different lines, then the protection related to one of the involved lines detects high fault current in one of the phases, the protection of the other line measures high current in the other involved phase.

In isolated or compensated networks, only one fault has to be removed with high speed to interrupt the cross-country-fault (double ground fault) current. This is the task of the distance protection function. The remaining small current of the other ground fault will be detected by another protection function.

For this reason, all distance relays in the galvanically connected network have the same "cross-country-fault phase preference system". In all distance protection relays detecting fault, only the leading or the lagging phase-to-ground fault impedance loop is evaluated depending on the used preference. The result is clearing only one of the ground faults.

As an example, the Figure below shows a "cross-country-fault": in the three-phase line P the involved phase is L1 and in the three-phase line Q the phase is L2.

Figure 5 "Cross-country-fault"

In the Figure above, as an example, if the preference system "Cyclic312" is selected then only the line P is to be disconnected, as L1 is leading, and the single-phase-to-ground fault on line Q remains with small current to be handled by the earth-fault protection system.

Table 34 contains the correct formulas for distance measurement. These formulas are applied only if the calculated "zero sequence current" Io= (IL1+IL2+IL3)/3 is detected to be high. In case of cross-country faults in each involved three-phase lines, one of the fault currents is "missing" because it flows on the other involved three-phase lines. Consequently the calculated zero sequence current is high.

The algorithm continuously calculates the impedances of the three line-to-ground fault loops; then the "SELECT" decision module selects the impedance for the trip decision.

It can be proven that in case of cross-country faults the appropriate application of the formulas in Table 34 always yields the positive sequence impedance between the fault location and the relay location for both involved lines. The required phase preference decision needs additional calculation.

Fault	Calculation of Z	Earth fault factor
L1	$Z_{L1} = \frac{U_{L1}}{I_{L1} + \alpha 3 I_o}$	
L2	$Z_{L2} = \frac{U_{L2}}{I_{L2} + \alpha 3 I_o}$	$\alpha = \frac{Z_0 - Z_1}{3Z_1}$
L3	$Z_{L3} = \frac{U_{L3}}{I_{L3} + \alpha 3 I_{o}}$	

Table 34 Formulas for the distance measurement

The selection equations for the phase preference are shown in Table 35. The right column shows that the denominator of the selection equation is a current, chosen according to the phase preference logic. The selection is listed according to Table 36.

Cross-country fault	Calculation of Zpref	Preference
L1L2	$Z_{L1L2_php} = \frac{U_{L1} - U_{L2}}{2I_{Lx}}$	In the lower index " <i>Lx</i> " is the phase identifier selected according to the phase preference logic (See Table 1-4)
L2L3	$Z_{L2L3_php} = \frac{U_{L2} - U_{L3}}{2I_{Ly}}$	In the lower index " <i>Ly</i> " is the phase identifier selected according to the phase preference logic (See Table 1-4)
L3L1	$Z_{L3L1_php} = \frac{U_{L3} - U_{L1}}{2I_{Lz}}$	In the lower index "Lz" is the phase identifier selected according to the phase preference logic (See Table 1-4)

Table 35 Formulas for the calculation of the phase preference

	Z_{L1L2_php}	Z_{L2L3_php}	Z_{L3L1_php}
Parameter Phase Pref	Lx	Ly	Lz
NoCross	No	o calculation is performe	d*
NoPref	No selection is nee	eded, TRIP command fo	r both faulty bays**
Cyc132	L2	L3	L1
Cyc312	L1	L2	L3
Acyc132	L1	L3	L1
Acyc123	L1	L2	L1
Acyc321	L2	L3	L3
Acyc312	L1	L3	L3
Acyc213	L2	L2	L1
Acyc231	L2	L2	L3

* with "NoCross" setting, for cross-country faults no operation is programmed; trip command is generated for line-to-line faults at the same three-phase line only

** with "NoPref" setting the function can be applied also for solidly grounded networks, however the DIS21HV distance protection function is preferred for these application for higher speed and for additional functions like power swing detection and for considering the impedance distortion due to the supply at the far line end.

Table 36 Trip selection for "cross-country-faults"

It can be proven that the selection equations, if the line-to-line faulty voltage and one of the faulty line currents is selected for the calculation, then the measured distance is somewhat above the average distance of both fault locations. (The increase is because the zero sequence voltage is higher then the positive one.) Because of the average distance, the result is not suitable for distance decision, but it can be used for the directional decision of the fault (forward or backward). The other voltage and current combinations result impedances which are phase-shifted by a considerable angle, related to the positive sequence impedance of the line between the relay and the fault location.

The TRIP command is generated, if the calculated impedance according to the equations in Table 2 is within the distance characteristic AND the direction according to the formulas in Table 3 also detect positive direction.

For stabilizing the decision, if one of the faults is a close-up fault, an additional criterion is applied: the directional decision formula applies a line-to-line voltage; the opposite phase voltage of which must be the largest one among the measured phase voltages.

Name	Title	Explanation
DIS21_HTXkm_OLM_	Fault location	Measured distance to fault in kilometers
DIS21_HTXohm_OLM_	Fault react.	Measured reactance to fault
DIS21_L12_R_OLM_	L12 loop R	Measured positive sequence resistance in L12 loop
DIS21_L12_X_OLM_	L12 loop X	Measured positive sequence reactance in L12 loop
DIS21_L23_R_OLM_	L23 loop R	Measured positive sequence resistance in L23 loop
DIS21_L23_X_OLM_	L23 loop X	Measured positive sequence reactance in L23 loop
DIS21_L31_R_OLM_	L31 loop R	Measured positive sequence resistance in L31 loop
DIS21_L31_X_OLM_	L31 loop X	Measured positive sequence reactance in L31 loop

Table 37 The measured values of the distance protection function

Technical data

Function	Range	Accuracy
Number of zones		5
Rated current In	1/5A, p	parameter setting
Rated voltage Un	100/200	/, parameter setting
Current effective range	20 – 2000% of In	±1% of In
Voltage effective range	2-110 % of Un	±1% of Un
Impedance effective range		
In=1A	0.1 – 200 Ohm	±5%
In=5A	0.1 – 40 Ohm	
Zone static accuracy	48 Hz – 52 Hz	±5%
	49.5 Hz – 50.5 Hz	±2%
Zone angular accuracy		±3 °
Operate time	Typically 30 ms	±3 ms
Minimum operate time	<25 ms	
Reset time	16 – 25 ms	
Reset ratio	1.1	

Table 38 Technical data of the 5-zone distance protection

The measured values of the distance protection function.

Measured value	Dim.	Explanation
ZL1L2 = RL1L2+j XL1L2	ohm	Measured positive sequence impedance in the L1L2 loop
ZL2L3 = RL2L3+j XL2L3	ohm	Measured positive sequence impedance in the L2L3 loop
ZL3L1 = RL3L1+j XL3L1	ohm	Measured positive sequence impedance in the L3L1 loop
Fault location	km	Measured distance to fault
Fault react.	ohm	Measured reactance in the fault loop

Table 39 The measured analogue values of the distance protection function

Parameters

The parameters of the distance protection function are explained in the following tables. **Enumerated parameters**

Parameter name	Title	Selection range	Default			
Parameters to select directionality of the individual zones:						
DIS21_Z1_EPar_	Operation Zone1	Off, Forward, Backward	Off			
DIS21_Z2_EPar_	Operation Zone2	Off, Forward, Backward, NonDirectional	Off			
DIS21_Z3_EPar_	Operation Zone3	Off, Forward, Backward, NonDirectional	Off			
DIS21_Z4_EPar_	Operation Zone4	Off, Forward, Backward, NonDirectional	Off			
DIS21_Z5_EPar_	Operation Zone5	Off, Forward, Backward, NonDirectional	Off			
Parameters for selection	at "cross-coun	try-fault":				
DIS21_Pref_EPar_	Phase Pref*	NoCross,NoPref, Cyc132,Cyc312, Acyc132,Acyc123,Acyc321,Acyc312, Acyc213,Acyc231	Cyc312			
Parameter for selecting one of the zones or "high speed overcurrent protection" for the "switch-onto-fault" function:						
DIS21_SOTFMd_EPar _	SOTF Zone	Off, Zone1, Zone2, Zone3, Zone4, Zone5, HSOC	Zone1			

*See * with "NoCross" setting, for cross-country faults no operation is programmed; trip command is generated for line-to-line faults at the same three-phase line only

** with "NoPref" setting the function can be applied also for solidly grounded networks, however the DIS21HV distance protection function is preferred for these application for higher speed and for additional functions like power swing detection and for considering the impedance distortion due to the supply at the far line end.

Table 40 The enumerated parameters of the distance protection function

	Fault in L1, L2	Fault in L2, L3	Fault in L3, L1
Parameter Phase Pref			
NoCross	No TRIP co	ommand for "Cross-cou	ntry-faults"*
NoPref	TRIP o	command for both faulty	bays**
Cyc132	L2	L3	L1
Cyc312	L1	L2	L3
Acyc132	L1	L3	L1
Acyc123	L1	L2	L1
Acyc321	L2	L3	L3
Acyc312	L1	L3	L3
Acyc213	L2	L2	L1
Acyc231	L2	L2	L3

* with "NoCross" setting, for cross-country faults no operation is programmed; trip command is generated for line-to-line faults at the same three-phase line only

** with "NoPref" setting the function can be applied also for solidly grounded networks, however the DIS21HV distance protection function is preferred for these application for higher speed and for additional functions like power swing detection and for considering the impedance distortion due to the supply at the far line end.

Table 41 Trip selection for "cross-country-faults"

 Boolean parameters
 for the individual zones to generate trip command (0) or to indicate starting only (1):

 Parameter name
 Title
 Default
 Explanation

Parameter name	Title	Default	Explanation
DIS21_Z1St_BPar_	Zone1 Start Only	0	0 for Zone1 to generate trip command
DIS21_Z2St_BPar_	Zone2 Start Only	0	0 for Zone2 to generate trip command
DIS21_Z3St_BPar_	Zone3 Start Only	0	0 for Zone3 to generate trip command
DIS21_Z4St_BPar_	Zone4 Start Only	0	0 for Zone4 to generate trip command
DIS21_Z5St_BPar_	Zone5 Start Only	0	0 for Zone5 to generate trip command

Table 42 The Boolean parameters of the distance protection function

Integer parameters

Parameter name	Title	Unit	Min	Max	Step	Default	
Definition of minimal current enabling impedance calculation:							
DIS21_Imin_IPar_	IPh Base Sens	%	10	30	1	20	
Definition of minimal currer	nt enabling "cross-country	y-fault" ca	lculatio	n:			
DIS21_loBase_IPar_	IRes Crosscountry	%	50	200	1	50	
DIS21_loBias_IPar_	IRes Bias	%	5	30	1	10	
Definition of the polygon ch	naracteristic angle in the	4 th quadra	ant of th	e imped	ance pla	ane:	
DIS21_dirRX_IPar_	Angle 2th Quad	deg	0	30	1	15	
Definition of the polygon ch	naracteristic angle in the	2 nd quadra	ant of th	ne impec	lance pl	ane:	
DIS21_dirXR_IPar_	Angle 4nd Quad	deg	0	30	1	15	
Definition of the polygon ch	naracteristic's zone reduc	tion angle	<u>e</u> on the	impeda	ince pla	ne:	
DIS21_Cut_IPar_	Zone Reduct Angle	deg	0	40	1	0	
Definition of the load angle	of the polygon character	istic:					
DIS21_LdAng_IPar_	Load Angle	deg	0	45	1	30	
Definition of the line angle:							
DIS21_LinAng_IPar_	DIS21_LinAng_IPar_ Line Angle deg 45 90 1 75						
Definition of the overcurrer DIS21_SOTFMd_EPar_(S				for the	case wh	ere the	
DIS21_SOTFOC_IPar_	SOTF Current	%	10	1000	1	200	

Table 43 The integer parameters of the distance protection function

	T (1)	D:			Defeelt			
Parameter name	Title	Dim.	Min	Max	Default			
R and X setting values for the five zones individually:								
DIS21_Z1R_FPar	Zone1 R	ohm	0.1	200	10			
DIS21_Z2R_FPar	Zone2 R	ohm	0.1	200	10			
DIS21_Z3R_FPar	Zone3 R	ohm	0.1	200	10			
DIS21_Z4R_FPar	Zone4 R	ohm	0.1	200	10			
DIS21_Z5R_FPar	Zone5 R	ohm	0.1	200	10			
DIS21_Z1X_FPar	Zone1 X	ohm	0.1	200	10			
DIS21_Z2X_FPar	Zone2 X	ohm	0.1	200	10			
DIS21_Z3X_FPar	Zone3 X	ohm	0.1	200	10			
DIS21_Z4X_FPar	Zone4 X	ohm	0.1	200	10			
DIS21_Z5X_FPar	Zone5 X	ohm	0.1	200	10			
Load encroachment settin	g:							
DIS21_LdR_FPar	R Load	ohm	0.1	200	10			
Zero sequence current co	mpensation factors for the	e five zones	s individual	ly:				
DIS21_Z1aX_FPar_	Zone1 (Xo-X1)/3X1		0	5	1			
DIS21_Z1aR_FPar_	Zone1 (Ro-R1)/3R1		0	5	1			
DIS21_Z2aX_FPar_	Zone2 (Xo-X1)/3X1		0	5	1			
DIS21_Z2aR_FPar_	Zone2 (Ro-R1)/3R1		0	5	1			
DIS21_Z3aX_FPar_	Zone3 (Xo-X1)/3X1		0	5	1			
DIS21_Z3aR_FPar_	Zone3 (Ro-R1)/3R1		0	5	1			
DIS21_Z4aX_FPar_	Zone4 (Xo-X1)/3X1		0	5	1			
DIS21_Z4aR_FPar_	Zone4 (Ro-R1)/3R1		0	5	1			
DIS21_Z5aX_FPar_	Zone5 (Xo-X1)/3X1		0	5	1			
DIS21_Z5aR_FPar_	Zone5 (Ro-R1)/3R1		0	5	1			
DIS21_Lgth_FPar_	Line Length	km	0.1	1000	100			
DIS21_LReact_FPar_	Line Reactance	ohm	0.1	200	10			

Floating point parameters

Table 44 The floating-point parameters of the distance protection function

Timer parameters

Parameter name	Title	Unit	Min	Max	Step	Default
Time delay for the zones in	dividually:					
DIS21_Z1Del_TPar_	Zone1 Time Delay	ms	0	60000	1	0
DIS21_Z2Del_TPar_	Zone2 Time Delay	ms	0	60000	1	400
DIS21_Z3Del_TPar_	Zone3 Time Delay	ms	0	60000	1	800
DIS21_Z4Del_TPar_	Zone4 Time Delay	ms	0	60000	1	2000
DIS21_Z5Del_TPar_	Zone5 Time Delay	ms	0	60000	1	2000

Table 45 The timer parameters of the distance protection function

2.5.1.8 Negative sequence overcurrent protection function (TOC46)

The negative sequence overcurrent protection function (TOC46) block operates if the negative sequence current is higher than the preset starting value.

In the negative sequence overcurrent protection function, definite-time or inverse-time characteristics are implemented, according to IEC or IEEE standards. The function evaluates a single measured current, which is the RMS value of the fundamental Fourier component of the negative sequence current. The characteristics are harmonized with IEC 60255-151, Edition 1.0, 2009-08.

The definite (independent) time characteristic has a fixed delaying time when the current is above the starting current G_s previously set as a parameter.

The standard dependent time characteristics of the negative sequence overcurrent protection function are as follows.

$$t(G) = TMS \left[\frac{k}{\left(\frac{G}{G_s}\right)^{\alpha} - 1} + c \right] \text{ when } G > G_s$$

where	
t(G)(seconds)	theoretical operate time with constant value of G,
k, c	constants characterizing the selected curve (in seconds),
α	constant characterizing the selected curve (no dimension),
G	measured value of the characteristic quantity, Fourier base harmonic of the negative sequence current (INFour),
Gs	preset starting value of the characteristic quantity,
TMS	preset time multiplier (no dimension).

	IEC ref		k _r	с	α
1	А	IEC Inv	0,14	0	0,02
2	В	IEC VeryInv	13,5	0	1
3	С	IEC ExtInv	80	0	2
4		IEC LongInv	120	0	1
5		ANSI Inv	0,0086	0,0185	0,02
6	D	ANSI ModInv	0,0515	0,1140	0,02
7	Е	ANSI VeryInv	19,61	0,491	2
8	F	ANSI ExtInv	28,2	0,1217	2
9		ANSI LongInv	0,086	0,185	0,02
10		ANSI LongVeryInv	28,55	0,712	2
11		ANSI LongExtInv	64,07	0,250	2

Table 46 The constants of the standard dependent time characteristics

A parameter (Operation) serves for choosing overcurrent function of independent time delay or dependent one with type selection above.

Time multiplier of the inverse characteristics (TMS) is also a parameter to be preset.

The end of the effective range of the dependent time characteristics (G_D) is:

$$G_{\rm D} = 20 * G_{\rm S}$$

Above this value the theoretical operating time is definite. The inverse type characteristics are also combined with a minimum time delay, the value of which is set by user parameter TOC46_MinDel_TPar_ (Min. Time Delay).

The negative phase sequence components calculation is based on the Fourier components of the phase currents.

The binary output status signals of the negative sequence overcurrent protection function are the general starting and the general trip command of the function.

The negative sequence overcurrent protection function has a binary input signal, which serves the purpose of disabling the function. The conditions of disabling are defined by the user, applying the graphic equation editor. Technical data

Function	Value	Accuracy		
Operating accuracy	10 ≤ G _s [%] ≤ 200	< 2 %		
Operate time accuracy		±5% or ±15 ms, whichever is greater		
Reset ratio	0,95			
Reset time * Dependent time charact. Definite time charact.	approx. 60 ms	<2 % or ±35 ms, whichever is greater		
Transient overreach		< 2 %		
Pickup time at 2* Gs	<40 ms			
Overshot time				
Dependent time charact.	25 ms			
Definite time charact.	45 ms			
Influence of time varying value of the input current (IEC 60255-151)		< 4 %		

Measured with signal contacts

Table 47 Technical data of the negative sequence overcurrent protection function

Parameters Enumerated parameter

Parameter name	Title	Selection range	Default			
Parameter for type selection						
TOC46_Oper_EPar_	Operation	Off, DefinitTime, IEC Inv, IEC VeryInv, IEC ExtInv, IEC LongInv, on ANSI Inv, ANSI ModInv, ANSI VeryInv, ANSI ExtInv, ANSI LongInv, ANSI LongVeryInv, ANSI LongExtInv				

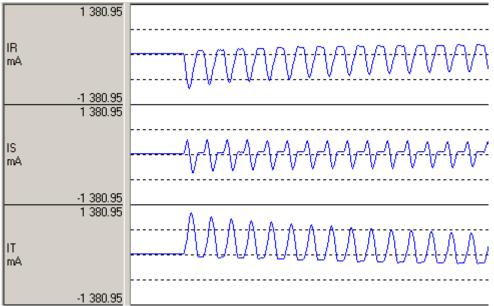
Table 48 The enumerated parameter of the negative sequence overcurrent protection function

Integer parameter

Parameter name	Title	Unit	Min	Max	Step	Default				
Starting current parameter:										
TOC46 StCurr IPar	Start Current	%	5	200	1	50				

Table 49 The integer parameter of the negative sequence overcurrent protection function

Timer parameters						
Parameter name	Title	Unit	Min	Max	Step	Default
Minimal time delay for the in	nverse characteristics:					
TOC46_MinDel_TPar_	Min Time Delay*	msec	0	60000	1	100
Definite time delay:						
TOC46_DefDel_TPar_	Definite Time Delay**	msec	0	60000	1	100
Reset time delay for the inv	erse characteristics:					
TOC46_Reset_TPar_	Reset Time*	msec	0	60000	1	100
Time multiplier for the inverse characteristics:						
TOC46_Multip_TPar_	Time Multiplier*	msec	100	60000	1	100


*Valid for inverse type characteristics

**Valid for definite type characteristics only

Table 50 The timer parameter of the negative sequence overcurrent protectionfunction

2.5.1.9 Inrush detection function (INR68)

When an inductive element with an iron core (transformer, reactor, etc.) is energized, high current peak values can be detected. This is caused by the transient asymmetric saturation of the iron core as a nonlinear element in the power network. The sizing of the iron core is usually sufficient to keep the steady state magnetic flux values below the saturation point of the iron core, so the inrush transient slowly dies out. These current peaks depend also on random factors such as the phase angle at energizing. Depending on the shape of the magnetization curve of the iron core, the detected peaks can be several times above the rated current peaks. Additionally, in medium or high voltage networks, where losses and damping are low, the indicated high current values may be sustained at length. Figure below shows a typical example for the inrush current shapes of a three-phase transformer.

A typical inrush current

As a consequence, overcurrent relays, differential relays or distance relays may start, and because of the long duration of the high current peaks, they may generate an unwanted trip command.

The inrush current detection function can distinguish between high currents caused by overload or faults and the high currents during the inrush time.

The operating principle of the inrush current detection function is based on the special shape of the inrush current.

The typical inrush current in one or two phases is asymmetrical to the time axis. For example, in IT of the Figure above the positive peaks are high while no peaks can be detected in the negative domain.

The theory of the Fourier analysis states that even harmonic components (2nd, 4th etc.) are dominant in waves asymmetrical to the time axis. The component with the highest value is the second one.

Typical overload and fault currents do not contain high even harmonic components.

The inrush current detection function processes the Fourier basic harmonic component and the second harmonic component of the three phase currents. If the ratio of the second harmonic and the base Fourier harmonic is above the setting value of the parameter *2nd Harm Ratio*, an inrush detection signal is generated.

The signal is output only if the base harmonic component is above the level defined by the setting of the parameter *IPh Base Sens*. This prevents unwanted operation in the event that low currents contain relatively high error signals.

The function operates independently using all three phase currents individually, and additionally, a general inrush detection signal is generated if any of the phases detects inrush current.

The function can be disabled by the binary input *Disable*. This signal is the result of logic equations graphically edited by the user.

Using the inrush detection binary signals, other protection functions can be blocked during the transient period so as to avoid the unwanted trip.

Some protection functions use these signals automatically, but a stand-alone inrush detection function block is also available for application at the user's discretion.

Technical data

Function	Range	Accuracy
Current accuracy	20 2000% of In	±1% of In

<i>Table</i> 51	Technical	data of the	inrush detection	function

Parameters

Enumerated parameter				
Parameter name	Title	Selection range	Default	
Disabling or enabling the operation of the function				
INR2_Op_EPar_	Operation	Off,On	On	

Table 52 The enumerated parameter of the inrush detection function

Integer paramet	ters	
-----------------	------	--

Parameter name	Title	Unit	Min	Max	Step	Default
Ratio of the second and basic harmonic Fourier components						
INR2_2HRat_IPar_,	2nd Harm Ratio	%	5	50	1	15
Basic sensitivity of the function						
INR2_MinCurr_IPar_	IPh Base Sens	%	20	100	1	30

Table 53 The integer parameter of the inrush detection function

2.5.1.10 Line thermal protection function (TTR49L)

Basically, line thermal protection measures the three sampled phase currents. RMS values are calculated and the temperature calculation is based on the highest RMS value of the phase currents.

The temperature calculation is based on the step-by-step solution of the thermal differential equation. This method yields "overtemperature", meaning the temperature above the ambient temperature. Accordingly, the temperature of the protected object is the sum of the calculated "overtemperature" and the ambient temperature.

If the calculated temperature (calculated "overtemperature"+ambient temperature) is above the threshold values, alarm, trip and restart blocking status signals are generated.

For correct setting, the following values must be measured and set as parameters: rated load current is the continuous current applied for the measurement, rated temperature is the steady state temperature at rated load current, base temperature is the temperature of the environment during the measurement and the time constant is the measured heating/cooling time constant of the exponential temperature function.

When energizing the protection device, the algorithm permits the definition of the starting temperature as the initial value of the calculated temperature. The parameter Startup Term. is the initial temperature above the temperature of the environment as compared to the rated temperature above the temperature of the environment

The ambient temperature can be measured using e.g. a temperature probe generating electric analog signals proportional to the temperature. In the absence of such measurement, the temperature of the environment can be set using the dedicated parameter TTR49L_Amb_IPar_ (Ambient Temperature). The selection between parameter value and direct measurement is made by setting the binary Boolean parameter.

The problem of metal elements (the protected line) exposed to the sun is that they are overheated as compared to the "ambient" temperature even without a heating current; furthermore, they are cooled mostly by the wind and the heat transfer coefficient is highly dependent on the effects of the wind. As the overhead lines are located in different geographical environments along the tens of kilometers of the route, the effects of the sun and the wind cannot be considered in detail. The best approximation is to measure the temperature of a piece of overhead line without current but exposed to the same environmental conditions as the protected line itself.

The application of thermal protection of the overhead line is a better solution than a simple overcurrent-based overload protection because thermal protection "remembers" the preceding load states of the line and the setting of the thermal protection does not need so a high security margin between the permitted current and the permitted continuous thermal current of the line. In a broad range of load states and in a broad range of ambient temperatures this permits the better exploitation of the thermal and consequently current carrying capacity of the line.

The thermal differential equation to be solved is:

 $\frac{d\Theta}{dt} = \frac{1}{T} \left(\frac{I^2(t)R}{hA} - \Theta \right), \text{ and the definition of the heat time constant is: } T = \frac{cm}{hA}$

In this differential equation:

- I(t) (RMS) heating current, the RMS value usually changes over time;
- R resistance of the line;
- c specific heat capacity of the conductor;
- m mass of the conductor;
- θ rise of the temperature above the temperature of the environment;
- h heat transfer coefficient of the surface of the conductor;
- A area of the surface of the conductor;
- t time.

PROTECTA

The solution of the thermal differential equation for constant current is the temperature as the function of time (the mathematical derivation of this equation is described in a separate document):

$$\Theta(t) = \frac{I^2 R}{hA} \left(1 - e^{-\frac{t}{T}} \right) + \Theta_o e^{-\frac{t}{T}}$$

where

 Θ_{o} is the starting temperature.

Remember that the calculation of the measurable temperature is as follows:

Temperature(t) = $\Theta(t)$ +Temp_ambient

where Temp ambient

is the ambient temperature.

In a separate document it is proven that some more easily measurable parameters can be introduced instead of the aforementioned ones. Thus, the general form of equation above is:

$$H(t) = \frac{\Theta(t)}{\Theta_n} = \frac{I^2}{I_n^2} \left(1 - e^{-\frac{t}{T}} \right) + \frac{\Theta_o}{\Theta_n} e^{-\frac{t}{T}}$$

where:

- H(t) is the "thermal level" of the heated object, this is the temperature as a percentage of the Θ_n reference temperature. (This is a dimensionless quantity but it can also be expressed in a percentage form.)
- Θ_n is the reference temperature above the temperature of the environment, which can be measured in steady state, in case of a continuous I_n reference current.
- In is the reference current (can be considered as the nominal current of the heated object). If it flows continuously, then the reference temperature can be measured in steady state.
- $\frac{\Theta_o}{\Theta}$ is a parameter of the starting temperature related to the reference temperature

The *RMS calculations modul* calculate the RMS values of the phase currents individually. The sampling frequency of the calculations is 1 kHz; therefore, theoretically, the frequency components below 500Hz are considered correctly in the RMS values. This module is not part of the thermal overload function; it belongs to the preparatory phase.

The Max selection module selects the maximal value of the three RMS phase currents.

The *Thermal replica module* solves the first order thermal differential equation using a simple step-by-step method and compares the calculated temperature to the values set by parameters. The temperature sensor value proportional to the ambient temperature can be an input (this signal is optional, defined at parameter setting).

The function can be disblaed by parameter, or generates a trip pulse if the calculated temperature exceeds the trip value, or generates a trip signal if the calculated temperature exceeds the trip value given by a parameter but it resets only if the temperature cools below the "Unlock temperature".

The line thermal protection function has two binary input signals. The conditions of the input signal are defined by the user, applying the graphic equation editor. One of the signals can block the line thermal protection function, the other one can reset the accumulated heat and set the temperature to the defined value for the subsequent heating test procedure.

Technical data	
Function	Accuracy
Operate time at I>1.2*Itrip	<3 % or <+ 20 ms

Table 54 Technical data of the line thermal protection function

Parameters

	Enumerated parameter			
Parameter name Title			Selection range	Default
	Parameter for mode of oper	ration		
	TTR49L_Oper_EPar_	Operation	Off, Pulsed, Locked	Pulsed

Table 55 The enumerated parameter of the line thermal protection function

The meaning of the enumerated values is as follows:

temperature".

Off the function is switched off; no output status signals are generated; Pulsed the function generates a trip pulse if the calculated temperature exceeds the trip value Locked the function generates a trip signal if the calculated temperature exceeds the trip value. It resets only if the temperature cools below the "Unlock

Integer parameters

Parameter name	Title	Unit	Min	Max	Step	Default
Alarm Temperature			1			
TTR49L_Alm_IPar_	Alarm Temperature	deg	60	200	1	80
Trip Temperature						
TTR49L_Trip_IPar_	Trip Temperature	deg	60	200	1	100
Rated Temperature						
TTR49L_Max_IPar_	Rated Temperature	deg	60	200	1	100
Base Temperature						
TTR49L_Ref_IPar_	Base Temperature	deg	0	40	1	25
Unlock Temperature						
TTR49L_Unl_IPar_	Unlock Temperature	deg	20	200	1	60
Ambient Temperature						
TTR49L_Amb_IPar_	Ambient Temperature	deg	0	40	1	25
Startup Term.						
TTR49L_Str_IPar	Startup Term	%	0	60	1	0
Rated Load Current						
TTR49L_Inom_IPar_	Rated Load Current	%	20	150	1	100
Time constant						
TTR49L_pT_IPar_	Time Constant	min	1	999	1	10

Table 56 The integer parameters of the line thermal protection function

Boolean parameter				
Boolean parameter	Signal title	Selection range	Default	
Parameter for ambient temperature sensor application				
TTR49L_Sens_BPar_	Temperature Sensor	No, Yes	No	

Table 57 The boolean parameter of the line thermal protection function

2.5.1.11 Definite time overvoltage protection function (TOV59)

The definite time overvoltage protection function measures three voltages. The measured values of the characteristic quantity are the RMS values of the basic Fourier components of the phase voltages.

The Fourier calculation inputs are the sampled values of the three phase voltages (UL1, UL2, UL3), and the outputs are the basic Fourier components of the analyzed voltages (UL1Four, UL2Four, UL3Four). They are not part of the TOV59 function; they belong to the preparatory phase.

The function generates start signals for the phases individually. The general start signal is generated if the voltage in any of the three measured voltages is above the level defined by parameter setting value.

The function generates a trip command only if the definite time delay has expired and the parameter selection requires a trip command as well.

The overvoltaget protection function has a binary input signal, which serves the purpose of disabling the function. The conditions of disabling are defined by the user, applying the graphic equation editor.

Technical data		
Function	Value	Accuracy
Pick-up starting accuracy		< ± 0,5 %
Blocking voltage		< ± 1,5 %
Reset time		
$U < \rightarrow Un$	60 ms	
$U < \rightarrow 0$	50 ms	
Operate time accuracy		< ± 20 ms
Minimum operate time	50 ms	

Table 58 Technical data of the definite time overvoltage protection function

Parameters

Enumerated parameter							
	Parameter name	Title	Selection range	Default			
Enabling or disabling the overvoltage protection function							
	TOV59_Oper_EPar_	Operation	Off, On	On			

Table 59 The enumerated parameter of the definite time overvoltage protection function

Integer pa	rameter
------------	---------

Parameter name	Title	Unit	Min	Max	Step	Default
Voltage level setting. If the measured voltage is above the setting value, the function generates a start signal.						
TOV59_StVol_IPar_	Start Voltage	%	30	130	1	63

Table 60 The integer parameter of the definite time overvoltage protection function

Boolean parameter

Parameter name	Title	Default
Enabling start signal only:		
TOV59_StOnly_BPar_	Start Signal Only	FALSE

Table 61 The boolean parameter of the definite time overvoltage protection function

Timer parameter						
Parameter name	Title	Unit	Min	Max	Step	Default
Time delay of the overvoltage protection function.						
TOV59_Delay_TPar_	Time Delay	ms	0	60000	1	100

Table 62 The timer parameter of the definite time overvoltage protection function

2.5.1.12 Definite time undervoltage protection function (TUV27)

The definite time undervoltage protection function measures the RMS values of the fundamental Fourier component of three phase voltages.

The Fourier calculation inputs are the sampled values of the three phase voltages (UL1, UL2, UL3), and the outputs are the basic Fourier components of the analyzed voltages (UL1Four, UL2Four, UL3Four). They are not part of the TUV27 function; they belong to the preparatory phase.

The function generates start signals for the phases individually. The general start signal is generated if the voltage is below the preset starting level parameter setting value and above the defined blocking level.

The function generates a trip command only if the definite time delay has expired and the parameter selection requires a trip command as well.

The operation mode can be chosen by the type selection parameter. The function can be disabled, and can be set to "1 out of 3", "2 out of 3", and "All".

The overvoltage protection function has a binary input signal, which serves the purpose of disabling the function. The conditions of disabling are defined by the user, applying the graphic equation editor.

Technical data

Function	Value	Accuracy
Pick-up starting accuracy		< ± 0,5 %
Blocking voltage		< ± 1,5 %
Reset time		
$U > \rightarrow Un$	50 ms	
$U > \rightarrow 0$	40 ms	
Operate time accuracy		< ± 20 ms
Minimum operate time	50 ms	

Table 63 Technical data of the definite time undervoltage protection function

Parameters

Enumerated parameter							
Parameter name	Title	Selection range	Default				
Parameter for type sele	Parameter for type selection						
TUV27_Oper_EPar_	Operation	Off, 1 out of 3, 2 out of 3, All	1 out of 3				

Table 64 The enumerated parameter of the definite time undervoltage protection function

Integer parameters		•				
Parameter name	Title	Unit	Min	Max	Step	Default
Starting voltage level s	etting					
TUV27_StVol_IPar_	Start Voltage	%	30	130	1	52
Blocking voltage level	setting					
TUV27_BlkVol_IPar_	Block Voltage	%	0	20	1	10
		1 0 1				

Table 65 The integer parameters of the definite time undervoltage protection function

Boolean parameter		
Parameter name	Title	Default
Enabling start signal only:		
TUV27_StOnly_BPar_	Start Signal Only	FALSE
Table 66 The boolean parame	tar of the definite time undervolt	and protection function

Table 66 The boolean parameter of the definite time undervoltage protection function

Timer parameters						
Parameter name	Title	Unit	Min	Max	Step	Default
Time delay of the under	Time delay of the undervoltage protection function.					
TUV27_Delay_TPar_	Time Delay	ms	0	60000	1	100

Table 67 The timer parameter of the definite time undervoltage protection function

2.5.1.13 Residual definite time overvoltage protection function (TOV59N)

The residual definite time overvoltage protection function operates according to definite time characteristics, using the RMS values of the fundamental Fourier component of the zero sequence voltage (UN=3Uo).

The Fourier calculation inputs are the sampled values of the residual or neutral voltage (UN=3Uo) and the outputs are the RMS value of the basic Fourier components of those.

The function generates start signal if the residual voltage is above the level defined by parameter setting value.

The function generates a trip command only if the definite time delay has expired and the parameter selection requires a trip command as well.

The residual overvoltage protection function has a binary input signal, which serves the purpose of disabling the function. The conditions of disabling are defined by the user, applying the graphic equation editor.

Tec	hnica	l data
100	muca	i uata

Function	Value	Accuracy
Dick up starting accuracy	2-8%	< ± 2 %
Pick-up starting accuracy	8 – 60 %	< ± 1.5 %
Reset time		
$U > \rightarrow Un$	60 ms	
$U > \rightarrow 0$	50 ms	
Operate time	50 ms	< ± 20 ms

Table 68 Technical data of the residual definite time overvoltage protection function

Parameters

Enumerated parameter							
Parameter name	Title	Selection range	Default				
Parameter for enabling/disabling:							
TOV59N_Oper_EPar_	Operation	Off, On	On				
Table 69 The enumerated parameter of the residual definite time overvoltage							

 Table 69 The enumerated parameter of the residual definite time overvoltage

 protection function

Integer parameter						
Parameter name	Title	Unit	Min	Max	Step	Default
Starting voltage paramete	r:					
TOV59N StVol IPar	Start Voltage	%	2	60	1	30

Table 70 The integer parameter of the residual definite time overvoltage protection function

Boolean parameter		
Parameter name	Title	Default
Enabling start signal only:		
TOV59N StOnly BPar	Start Signal Only	FALSE

Table 71 The boolean parameter of the residual definite time overvoltage protectionfunction

Timer parameter

Parameter name	Title	Unit	Min	Max	Step	Default
Definite time delay:						
TOV59N_Delay_TPar_	Time Delay	ms	0	60000	1	100

Table 72 The time parameter of the residual definite time overvoltage protectionfunction

2.5.1.14 Over-frequency protection function (TOF81)

The deviation of the frequency from the rated system frequency indicates unbalance between the generated power and the load demand. If the available generation is large compared to the consumption by the load connected to the power system, then the system frequency is above the rated value. The over-frequency protection function is usually applied to decrease generation to control the system frequency.

Another possible application is the detection of unintended island operation of distributed generation and some consumers. In the island, there is low probability that the power generated is the same as consumption; accordingly, the detection of high frequency can be one of the indication of island operation.

Accurate frequency measurement is also the criterion for the synchro-check and synchroswitch functions.

The accurate frequency measurement is performed by measuring the time period between two rising edges at zero crossing of a voltage signal. For the acceptance of the measured frequency, at least four subsequent identical measurements are needed. Similarly, four invalid measurements are needed to reset the measured frequency to zero. The basic criterion is that the evaluated voltage should be above 30% of the rated voltage value.

The over-frequency protection function generates a start signal if at least five measured frequency values are above the preset level.

Time delay can also be set.

The function can be enabled/disabled by a parameter.

The over-frequency protection function has a binary input signal. The conditions of the input signal are defined by the user, applying the graphic equation editor. The signal can block the under-frequency protection function.

Function	Range	Accuracy
Operate range	40 - 70 Hz	30 mHz
Effective range	45 - 55 Hz / 55 - 65 Hz	2 mHz
Operate time		min 140 ms
Time delay	140 – 60000 ms	± 20 ms
Reset ratio		0,99

Table 73 Technical data of the over-frequency protection function

Parameters

Enumerated perometer

Parameter name	Title	Selection range			Default	
Selection of the operati	ng mode					
TOF81_Oper_EPar_	Operation	Off,On			On	
Table 74 The enu	merated param	neter of the ove	r-frequer	icy prote	ection fun	ction
Boolean parameter	*	0	v 1		v	
Parameter name		Title			Default	
Enabling start signal or	ıly:					
TOF81_StOnly_BPar_		Start Signal Only			FALSE	
Table 75 The b	oolean paramei	ter of the over-	frequenc	y protect	tion funct	tion
Float point parameter	_	-	_	_	-	
Parameter name	Title	Unit	Min	Max	Step	Default
Setting value of the cor	nparison					
TOF81_St_FPar_	Start Frequen	Start Frequency Hz 40 60			0.01	51
Table 76 The flo	at point param	eter of the over	r-frequen	cy prote	ction fund	ction

Timer parameter						
Parameter name	Title	Unit	Min	Max	Step	Default
Time delay						
TOF81_Del_TPar_	Time Delay	msec	100	60000	1	200
T -1-1 - 77 Tl	4	Caller and free			for the state	

Table 77 The timer parameter of the over-frequency protection function

2.5.1.15 Underfrequency protection function (TUF81)

The deviation of the frequency from the rated system frequency indicates unbalance between the generated power and the load demand. If the available generation is small compared to the consumption by the load connected to the power system, then the system frequency is below the rated value. The under-frequency protection function is usually applied to increase generation or for load shedding to control the system frequency.

Another possible application is the detection of unintended island operation of distributed generation and some consumers. In the island, there is low probability that the power generated is the same as consumption; accordingly, the detection of low frequency can be one of the indications of island operation.

Accurate frequency measurement is also the criterion for the synchro-check and synchro-switch functions.

The accurate frequency measurement is performed by measuring the time period between two rising edges at zero crossing of a voltage signal. For the acceptance of the measured frequency, at least four subsequent identical measurements are needed. Similarly, four invalid measurements are needed to reset the measured frequency to zero. The basic criterion is that the evaluated voltage should be above 30% of the rated voltage value.

The under-frequency protection function generates a start signal if at least five measured frequency values are below the setting value.

Time delay can also be set.

The function can be enabled/disabled by a parameter.

The under-frequency protection function has a binary input signal. The conditions of the input signal are defined by the user, applying the graphic equation editor. The signal can block the under-frequency protection function.

l'eonnour data		
Function	Range	Accuracy
Operate range	40 - 70 Hz	30 mHz
Effective range	45 - 55 Hz / 55 - 65 Hz	2 mHz
Operate time		min 140 ms
Time delay	140 – 60000 ms	± 20 ms
Reset ratio		0,99

Table 78 Technical data of the under-frequency protection function

Parameters

Enumerated parameter

Parameter name	Title	Selection range	Default
Selection of the operating	node		
TUF81_Oper_EPar_	Operation	Off, On	On

Table 79 The enumerated parameter of the under-frequency protection function

Boolean parameter		
Parameter name	Title	Default
Enabling start signal only:		
TUF81_StOnly_BPar_	Start Signal Only	FALSE

Table 80 The boolean parameter of the under-frequency protection function

Float point parameter						
Parameter name	Title	Unit	Min	Max	Digits	Default
Preset value of the comparison						
TUF81_St_FPar_	Start Frequency	Hz	40	60	0.01	49

Table 81 *The float point parameter of the under-frequency protection function* **Timer parameter**

Parameter name	Title	Unit	Min	Max	Step	Default
Time delay						
TUF81_Del_TPar_	Time Delay	ms	100	60000	1	200
Table 92 The time on a gram star of the surder frequency protection function						

Table 82 The timer parameter of the under-frequency protection function

2.5.1.16 Rate of change of frequency protection function (FRC81)

The deviation of the frequency from the rated system frequency indicates unbalance between the generated power and the load demand. If the available generation is large compared to the consumption by the load connected to the power system, then the system frequency is above the rated value, and if it is small, the frequency is below the rated value. If the unbalance is large, then the frequency changes rapidly. The rate of change of frequency protection function is usually applied to reset the balance between generation and consumption to control the system frequency.

Another possible application is the detection of unintended island operation of distributed generation and some consumers. In the island, there is low probability that the power generated is the same as consumption; accordingly, the detection of a high rate of change of frequency can be an indication of island operation.

Accurate frequency measurement is also the criterion for the synchro-switch function.

The source for the rate of change of frequency calculation is an accurate frequency measurement.

In some applications, the frequency is measured based on the weighted sum of the phase voltages.

The accurate frequency measurement is performed by measuring the time period between two rising edges at zero crossing of a voltage signal. For the acceptance of the measured frequency, at least four subsequent identical measurements are needed. Similarly, four invalid measurements are needed to reset the measured frequency to zero. The basic criterion is that the evaluated voltage should be above 30% of the rated voltage value.

The rate of change of frequency protection function generates a start signal if the df/dt value is above the setting value. The rate of change of frequency is calculated as the difference of the frequency at the present sampling and at three periods earlier.

Time delay can also be set.

The function can be enabled/disabled by a parameter.

The rate of change of frequency protection function has a binary input signal. The conditions of the input signal are defined by the user, applying the graphic equation editor. The signal can block the rate of change of frequency protection function.

Technical data

Function	Effective range	Accuracy
Operating range	-50.05 and +0.05 - +5 Hz/sec	
Pick-up accuracy		±20 mHz/sec
Operate time	min 140 ms	
Time delay	140 – 60000 ms	<u>+</u> 20 ms

Table 83 Technical data of the rate of change of frequency protection function

Parameters

Enumerated parameter	Enumerated parameter						
Parameter name	Title	Selection range	Default				
Selection of the operating	mode						
FRC81_Oper_EPar_	Operation	Off,On	On				

 Table 84 The enumerated parameter of the rate of change of frequency protection

 function

Boolean parameter					
Parameter name	Title	Default			
Enabling start signal only:					
FRC81_StOnly_BPar_	Start Signal Only	True			

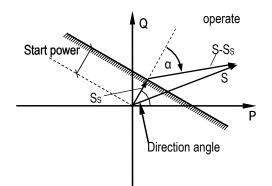
Table 85 The boolean parameter of the rate of change of frequency protectionfunction

Float point parameter

Parameter name	Title	Unit	Min	Max	Step	Default
Setting value of the comparison						
FRC81_St_FPar_	Start df/dt	Hz/sec	-5	5	0.01	0.5

Table 86 The float point parameter of the rate of change of frequency protectionfunction

Timer parameters						
Parameter name	Title	Unit	Min	Max	Step	Default
Time delay						
FRC81_Del_TPar_	Time Delay	msec	100	60000	1	200


Table 87 The timer parameter of the rate of change of frequency protection function

2.5.1.17 Directional overpower function (DOP32)

The directional over-power protection function can be applied to protect any elements of the electric power system mainly generators if the active and/or reactive power must be limited. The inputs of the function are the Fourier basic harmonic components of the three phase currents and those of the three phase voltages.

Based on the measured voltages and currents, the block calculates the three-phase active and reactive power (point S in the figure below) and compares the P-Q coordinates with the defined characteristics on the power plane. The characteristic is defined as a line laying on the point SS and perpendicular to the direction of SS. The SS point is defined by the "Start power" magnitude and the "Direction angle". The over-power function operates if the angle of the S-Ss vector related to the directional line is below 90 degrees and above -90 degrees.

At operation, the "Start power" value is decreased by a hysteresis value.

Additionally to the directional decision, for the operation the function may not be blocked by the general "Block" signal, and may not be blocked by the signal "Block for VTS" of the voltage transformer supervision function.

If the parameter setting requires also a trip signal (DOP32_StOnly_BPar_=0), then the measurement of the definite time delay is started. The expiry of this timer results in a trip command.

The function can be enabled/disabled by a parameter.

Technical data

Function	Value	Accuracy
P,Q measurement	l > 10% ln *	< 5%
P,Q meas with CT1500	I > 5% ln *	< 5%
Direction angle	-179 - + 180° *	< 5%
	* = Angle btw. U&I: -70°- +70°	
Reset ratio	< 0,99	
Reset time	< 100 ms	
Operating time	< 125 ms	
Time delay	0.2-60s	1% or ± 25 ms

Table 88 Technical data of the overpower protection function

Parameters

Enumerated parameter

Parameter name	Title	Selection range	Default	
Selection of the operating mode				
DOP32_Oper_EPar_	Operation	Off,On	Off	
T 11 00 T	. 1	· · · · · · · · · · · · · · · · · · ·		

Table 89 The enumerated parameter of the overpower protection function

Boolean parameter

Parameter name		Title	Default	
Enabling start signal only:				
DOP32_StOnly_BPar_ Start Signal Only True				
Table 00 The boolean nanometer of the overnover protection function				

Table 90 The boolean parameter of the overpower protection function

Integer parameter

Parameter name	Title	Unit	Min	Max	Step	Default
Direction angle						
DOP32_RCA_IPar_	Direction Angle	deg	-179	180	1	0
					-	

Table 91 The integer parameter of the overpower protection function

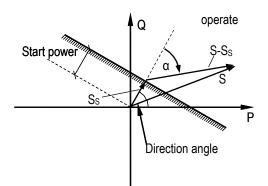
Float point parameter						
Parameter name	Title	Unit	Min	Max	Step	Default
Minimum power setting						
DOP32_StPow_FPar_	Start Power	%	1	200	0.1	10
Table 02 The flaget a sint a summer of the summer summer station for stick						

Table 92 The float point parameter of the overpower protection function

Timer parameters

Parameter name	Title	Unit	Min	Max	Step	Default
Definite time delay						
DOP32_Delay_TPar_	Time Delay	msec	200	60000	1	100

Table 93 The timer parameter of the rate of the overpower protection function


2.5.1.18 Directional underpower function (DUP32)

The directional under-power protection function can be applied mainly to protect any elements of the electric power system, mainly generators, if the active and/or reactive power must be limited in respect of the allowed minimum power.

The inputs of the function are the Fourier basic harmonic components of the three phase currents and those of the three phase voltages.

Based on the measured voltages and currents, the block calculates the three-phase active and reactive power (point S in the figure below) and compares the P-Q coordinates with the defined characteristics on the power plane. The characteristic is defined as a line laying on the point SS and perpendicular to the direction of SS. The SS point is defined by the "Start power" magnitude and the "Direction angle". The under-power function operates if the angle of the S-SS vector related to the directional line is above 90 degrees or below -90 degrees, i.e. if the point S is on the "Operate" side of the P-Q plane.

At operation, the "Start power" value is increased by a hysteresis value.

Additionally to the directional decision, the function may not be blocked by the general "Block" signal, and may not be blocked by the signal "Block for VTS" of the voltage transformer supervision function.

If the parameter setting requires also a trip signal (DUP32_StOnly_BPar_=0), then the measurement of the definite time delay is started. The expiry of this timer results in a trip command.

The function can be enabled/disabled by a parameter.

Function	Value	Accuracy
P,Q measurement	l > 10% ln *	< 5%
P,Q meas with CT1500	l > 5% ln *	< 5%
Direction angle	-179 - + 180° *	< 5%
	* = Angle btw. U&I: -70°- +70°	
Reset ratio	< 0,99	
Reset time	< 100 ms	
Operating time	< 125 ms	
Time delay	0.2-60s	1% or ± 25 ms

Technical data

Table 94 Technical data of the underpower protection function

Parameters

Enumerated parameter

Parameter name	Title	Selection range	Default		
Selection of the operating mode					
DUP32_Oper_EPar_	Operation	Off,On	Off		

Table 95 The enumerated parameter of the underpower protection function

Boolean parameter

Parameter name	Title	Default		
Enabling start signal only:				
DUP32_StOnly_BPar_	Start Signal Only	True		

Table 96 The boolean parameter of the underpower protection function

Integer parameter

Parameter name	Title	Unit	Min	Max	Step	Default
Direction angle						
DUP32_RCA_IPar_	Direction Angle	deg	-179	180	1	0

Table 97 The integer parameter of the underpower protection function

Float point parameter						
Parameter name	Title	Unit	Min	Max	Step	Default
Minimum power setting						
DUP32_StPow_FPar_	Start Power	%	1	200	0.1	10
	•	C .1	1		· c	

Table 98 The float point parameter of the underpower protection function

Timer parameters

Parameter name	Title	Unit	Min	Max	Step	Default
Definite time delay						
DUP32_Delay_TPar_	Time Delay	msec	200	60000	1	100

Table 99 The timer parameter of the rate of the underpower protection function

2.5.1.19 Auto-reclose protection (REC79MV)

The MV automatic reclosing function can realize up to four shots of reclosing for mediumvoltage networks. The dead time can be set individually for each reclosing and separately for earth faults and for multi-phase faults. All shots are of three phase reclosing.

The starting signal of the cycles can be generated by any combination of the protection functions or external signals of the binary inputs.

The automatic reclosing function is triggered if as a consequence of a fault a protection function generates a trip command to the circuit breaker and the protection function resets because the fault current drops to zero or the circuit breaker's auxiliary contact signals open state. According to the preset parameter values, either of these two conditions starts counting the dead time, at the end of which the MV automatic reclosing function generates a close command automatically. If the fault still exits or reappears, then within the "Reclaim time" the protection functions picks up again and the subsequent cycle is started. If the fault still exists at the end of the last cycle, the MV automatic reclosing function trips and generates the signal for final trip. If no pickup is detected within this time, then the MV automatic reclosing cycle resets and a new fault will start the procedure with the first cycle again.

At the moment of generating the close command, the circuit breaker must be ready for operation, which is signaled via the binary input "CB Ready". The preset parameter value "CB Supervision time" decides how long the MV automatic reclosing function is allowed to wait at the end of the dead time for this signal. If the signal is not received during this dead time extension, then the MV automatic reclosing function terminates.

Depending on binary parameter settings, the automatic reclosing function block can accelerate trip commands of the individual reclosing cycles. This function needs user-programmed graphic equations to generate the accelerated trip command.

The duration of the close command depends on preset parameter value "Close command time", but the close command terminates if any of the protection functions issues a trip command.

The MV automatic reclosing function can control up to four reclosing cycles. Depending on the preset parameter values "EarthFaults Rec,Cycle" and "PhaseFaults Rec,Cycle", there are different modes of operation, both for earth faults and for multi-phase faults:

Disabled	No automatic reclosing is selected,
1. Enabled	Only one automatic reclosing cycle is selected,
1.2. Enabled	Two automatic reclosing cycles are activated,
1.2.3. Enabled	Three automatic reclosing cycles are activated,
1.2.3.4. Enabled	All automatic reclosing cycles are activated.

The function can be switched Off /On using the parameter "Operation".

The user can also block the MV automatic reclosing function applying the graphic equation editor. The binary status variable to be programmed is "Block".

Depending on the preset parameter value "Reclosing started by", the MV automatic reclosing function can be started either by resetting of the TRIP command or by the binary signal indicating the open state of the circuit breaker.

If the reset state of the TRIP command is selected to start the MV automatic reclosing function, then the conditions are defined by the user applying the graphic equation editor. The binary status variable to be programmed is "AutoReclosing Start".

If the open state of the circuit breaker is selected to start the MV automatic reclosing function, then additionally to programming the "AutoReclosing Start" signal, the conditions for detecting the open state of the CB are defined by the user applying the graphic equation editor.

S24_Var3_config_V2.4.doc

For all four reclosing cycles, separate dead times can be defined for line-to-line faults and for earth faults. The dead time counter of any reclosing cycle is started by the starting signal but starting can be delayed.

Reclosing is possible only if the conditions required by the "synchro-check" function are fulfilled. The conditions are defined by the user applying the graphic equation editor. The HV automatic reclosing function waits for a pre-programmed time for this signal. This time is defined by the user. If the "SYNC Release" signal is not received during the running time of this timer, then the "synchronous switch" operation is started. If no synchronous switching is possible, then the MV automatic reclosing function resets.

In case of a manual close command which is assigned to the binary input "Manual Close" using graphic equation programming, a preset parameter value decides how long the MV automatic reclosing function should be disabled after the manual close command.

The MV automatic reclosing function can be blocked by a binary input. The conditions are defined by the user applying the graphic equation editor.

Tec	hni	ical	data
160		cai	uata

Function	Accuracy
Operating time	±1% of setting value or ±30 ms

Table 100 Technical data of the auto-reclosing protection function

Parameters

Enumerated parameters					
Parameter name	Title	Selection range	Default		
Switching ON/OFF the MV automatic reclosing function					
REC79_Op_EPar_	Operation	Off, On	On		
Selection of the number of	reclosing seq	uences in case of earth faults			
REC79_EFCycEn_EPar	EarthFault	Disabled, 1. Enabled, 1.2. Enabled,	1. Enabled		
_	RecCycle	1.2.3. Enabled, 1.2.3.4. Enabled	T. Ellableu		
Selection of the number of	reclosing seq	uences in case of line-to-line faults			
REC79_PhFCycEn_EPa	PhaseFault	Disabled, 1. Enabled, 1.2. Enabled,	1. Enabled		
r_	RecCycle	1.2.3. Enabled, 1.2.3.4. Enabled	T. Enabled		
Selection of triggering the dead time counter (trip signal reset or circuit breaker open position)					
REC79_St_EPar_	Reclosing	Trip reset, CB open	Trip reset		
	Started by		The reset		

Table 101 The enumerated parameters of the auto-reclosing protection function

Timer parameters						
Parameter name	Title	Unit	Min	Max	Ste	Defaul
					р	t
	first reclosing cycle for line-	to-line fau			-	
REC79_PhDT1_TPar_	1. Dead Time Ph	msec	0	100000	10	500
	second reclosing cycle for l	ine-to-line	fault	_	-	
REC79_PhDT2_TPar_	2. Dead Time Ph	msec	10	100000	10	600
Dead time setting for the t	third reclosing cycle for line	-to-line fa	ult			
REC79_PhDT3_TPar_	3. Dead Time Ph	msec	10	100000	10	700
Dead time setting for the f	fourth reclosing cycle for lin	e-to-line f	ault			
REC79_PhDT4_TPar_	4. Dead Time Ph	msec	10	100000	10	800
Dead time setting for the f	first reclosing cycle for eart	h fault				
REC79_EFDT1_TPar_	1. Dead Time EF	msec	0	100000	10	1000
Dead time setting for the	second reclosing cycle for e	earth fault				
REC79_EF DT2_TPar_	2. Dead Time EF	msec	10	100000	10	2000
Dead time setting for the t	third reclosing cycle for ear	th fault				
REC79_EFDT3_TPar_	3. Dead Time EF	msec	10	100000	10	3000
Dead time setting for the f	fourth reclosing cycle for ea	arth fault				
REC79_EF DT4_TPar_	4. Dead Time EF	msec	10	100000	10	4000
Reclaim time setting				•		
REC79_Rec_TPar_	Reclaim Time	msec	100	100000	10	2000
Impulse duration setting for	or the CLOSE command	•				
REC79_Close_TPar_	Close Command Time	msec	10	10000	10	100
Setting of the dynamic blo	ocking time	•				
REC79_DynBlk_TPar_	Dynamic Blocking Time	msec	10	100000	10	1500
Setting of the blocking tim	e after manual close comm	hand		-		
REC79_MC_TPar_	Block after Man Close	msec	0	100000	10	1000
Setting of the action time	(max. allowable duration b	etween pi	rotectio	n start and	trip)	
REC79_Act_TPar_	Action Time	msec	0	20000	10	1000
Limitation of the starting s	ignal (trip command is too	long or th	e CB o	pen signal	receive	ed too
late)		-				
REC79_MaxSt_TPar_	Start Signal Max Time	msec	0	10000	10	1000
Max. delaying the start of	the dead-time counter					
REC79_DtDel_TPar_	DeadTime Max Delay	msec	0	100000	10	3000
	eaker ready to close signal					
REC79_CBTO_TPar_	CB Supervision Time	msec	10	100000	10	1000
Waiting time for synchron	ous state signal					
REC79_SYN1_TPar_	SynCheck Max Time	msec	500	100000	10	10000
Waiting time for synchron	ous switching signal					
REC79_SYN2_TPar_	SynSW Max Time	msec	500	100000	10	10000
T 11 100 T						

Table 102 The timer parameters of the auto-reclosing protection function

Boolean parameters	
---------------------------	--

Parameter name	Title	Default	Explanation
REC79_CBState_BPar_	CB State Monitoring	0	Enable CB state monitoring for "Not Ready" state
REC79_Acc1_BPar_	Accelerate 1.Trip	0	Accelerate trip command at starting cycle 1
REC79_Acc2_BPar_	Accelerate 2.Trip	0	Accelerate trip command at starting cycle 2
REC79_Acc3_BPar_	Accelerate 3.Trip	0	Accelerate trip command at starting cycle 3
REC79_Acc4_BPar_	Accelerate 4.Trip	0	Accelerate trip command at starting cycle 4
REC79_Acc5_BPar_	Accelerate FinTrip	0	Accelerate final trip command
Table 103 The bo	olean parameters of	f the auto-	reclosing protection function

 Table 103 The boolean parameters of the auto-reclosing protection function

2.5.1.20 Synchro check, synchro switch function

Several problems can occur in the electric power system if the circuit breaker closes and connects two systems operating asynchronously. The high current surge can cause damage in the interconnecting elements, the accelerating forces can overstress the shafts of rotating machines or, at last, the actions taken by the protective system can result in the unwanted separation of parts of the electric power system.

To prevent such problems, this function checks whether the systems to be interconnected are operating synchronously. If yes, then the close command is transmitted to the circuit breaker. In case of asynchronous operation, the close command is delayed to wait for the appropriate vector position of the voltage vectors on both sides of the circuit breaker. If the conditions for safe closing cannot be fulfilled within an expected time, then closing is declined.

The conditions for safe closing are as follows:

- The difference of the voltage magnitudes is below the declared limit,
- The difference of the frequencies is below the declared limit and
- The angle difference between the voltages on both sides of the circuit breaker is within the declared limit.

The function processes both automatic reclosing and manual close commands.

The limits for automatic reclosing and manual close commands can be set independently of each other.

The function compares the voltage of the line and the voltage of one of the bar sections (Bus1 or Bus2). The bus selection is made automatically based on a binary input signal defined by the user applying the graphic equation editor.

As to voltages: any phase-to-ground or phase-to-phase voltage can be selected.

The function processes the signals of the voltage transformer supervision function and enables the close command only in case of plausible voltages.

There are three modes of operation:

- Energizing check:
 - o Dead bus, live line,
 - \circ $\,$ Live bus, dead line,
 - Any Energizing Case (including Dead bus, dead line).
 - Synchro check (Live line, live bus)
 - Synchro switch (Live line, live bus)

If the conditions for "Energizing check" or "Synchro check" are fulfilled, then the function generates the release command, and in case of a manual or automatic close request, the close command is generated.

If the conditions for energizing or synchronous operation are not met when the close request is received, then synchronous switching is attempted within the set time-out. In this case, the rotating vectors must fulfill the conditions for safe switching within the declared waiting time: at the moment the contacts of the circuit breaker are closed, the voltage vectors must match each other with appropriate accuracy. For this mode of operation, the expected operating time of the circuit breaker must be set as a parameter value, to generate the close command in advance taking the relative vector rotation speed into consideration.

The started checking procedure can be interrupted by a cancel command defined by the user in the graphic equation editor.

In "bypass" operation mode, the function generates the release signals and simply transmits the close command.

The function can be started by the switching request signals initiated both the automatic reclosing and the manual closing. The binary input signals are defined by the user, applying the graphic equation editor.

Blocking signal of the function are defined by the user, applying the graphic equation editor.

Blocking signal of the voltage transformer supervision function for all voltage sources are defined by the user, applying the graphic equation editor.

Signal to interrupt (cancel) the automatic or the manual switching procedure are defined by the user, applying the graphic equation editor.

Technical data

Function	Effective range	Accuracy in the effective range	
Rated Voltage Un	100/200V, parameter setting		
Voltage effective range	10-110 % of Un	±1% of Un	
Frequency	47.5 – 52.5 Hz	±10 mHz	
Phase angle		±3 °	
Operate time	Setting value	±3 ms	
Reset time	<50 ms		
Reset ratio	0.95 Un		

Parameters

Enumerated parameters						
Parameter name	Title	Selection range	Default			
Selection of the processed	voltage					
SYN25_VoltSel_EPar_	Voltage Select	L1-N,L2-N,L3-N,L1-L2,L2-L3,L3-L1	L1-N			
Operation mode for automa	atic switching					
SYN25_OperA_EPar_	Operation Auto	Off, On, ByPass	On			
Enabling/disabling automat	ic synchro switching	g				
SYN25_SwOperA_EPar_	SynSW Auto	Off, On	On			
Energizing mode for automatic switching						
SYN25_EnOperA_EPar_	Energizing Auto	Off, DeadBus LiveLine, LiveBus DeadLine, Any energ case	DeadBus LiveLine			
Operation mode for manua	Iswitching	· · · · · · · · · · · · · · · · · · ·	•			
SYN25_OperM_EPar_	Operation Man	Off, On, ByPass	On			
Enabling/disabling manual	synchro switching					
SYN25_SwOperM_EPar _	SynSW Man	Off, On	On			
Energizing mode for manua	al switching					
SYN25_EnOperM_EPar_	Energizing Man	Off,DeadBus LiveLine, LiveBus DeadLine, Any energ case	DeadBus LiveLine			

Integer parameters							
Parameter name	Title	Unit	Min	Max	Step	Default	
Voltage limit for "live line" de	tection						
SYN25_LiveU_IPar_	U Live	%	60	110	1	70	
Voltage limit for "dead line" d	etection						
SYN25_DeadU_IPar_	U Dead	%	10	60	1	30	
Voltage difference for autom	atic synchro checking	g mode					
SYN25_ChkUdA_IPar_	%	5	30	1	10		
Voltage difference for automatic synchro switching mode							
SYN25_SwUdA_IPar_ Udiff SynSW Auto % 5 30 1 10					10		
Phase difference for automa	tic switching						
SYN25_MaxPhDiffA_IPar_	MaxPhaseDiff Auto	deg	5	80	1	20	
Voltage difference for manua	al synchro checking n	node					
SYN25_ChkUdM_IPar_	Udiff SynCheck Man	%	5	30	1	10	
Voltage difference for manua	al synchro switching r	node					
SYN25_SwUdM_IPar_	SYN25_SwUdM_IPar_ Udiff SynSW Man % 5 30 1 10						
Phase difference for manual	switching						
SYN25_MaxPhDiffM_IPar_	MaxPhaseDiff Man	deg	5	80	1	20	

Floating point parameters

Title	Dim.	Min	Max	Default	
omatic synchro checkir	ng mode				
FrDiff SynCheck Auto	Hz	0.02	0.5	0.02	
Frequency difference for automatic synchro switching mode					
FrDiff SynSW Auto	Hz	0.10	1.00	0.2	
nual synchro checking	mode				
FrDiff SynCheck Man	Hz	0.02	0.5	0.02	
Frequency difference for manual synchro switching mode					
FrDiff SynSW Man	Hz	0.10	1.00	0.2	
t	tomatic synchro checkir FrDiff SynCheck Auto tomatic synchro switchi FrDiff SynSW Auto nual synchro checking FrDiff SynCheck Man	tomatic synchro checking mode FrDiff SynCheck Auto Hz tomatic synchro switching mode FrDiff SynSW Auto Hz nual synchro checking mode FrDiff SynCheck Man Hz anual synchro switching mode	tomatic synchro checking mode FrDiff SynCheck Hz 0.02 Auto Hz 0.10 tomatic synchro switching mode FrDiff SynSW Auto Hz 0.10 nual synchro checking mode FrDiff SynCheck Hz 0.02 Man Hz 0.02	tomatic synchro checking modeFrDiff SynCheck AutoHz0.020.5tomatic synchro switching modeFrDiff SynSW AutoHz0.101.00Inual synchro checking modeFrDiff SynCheck ManHz0.020.5anual synchro switching mode	

Timer parameters

Parameter name	Title	Unit	Min	Max	Step	Default
Breaker operating time at closing						
SYN25_CBTrav_TPar_	Breaker Time	msec	0	500	1	80
Impulse duration for close command						
SYN25_SwPu_TPar_	Close Pulse	msec	10	60000	1	1000
Maximum allowed switching time						
SYN25_MaxSw_TPar_	Max Switch Time	msec	100	60000	1	2000

2.5.1.21 Dead line detection function (DLD)

The "Dead Line Detection" (DLD) function generates a signal indicating the dead or live state of the line. Additional signals are generated to indicate if the phase voltages and phase currents are above the pre-defined limits.

The task of the "Dead Line Detection" (DLD) function is to decide the Dead line/Live line state.

<u>Criteria of "Dead line" state</u>: all three phase voltages are below the voltage setting value AND all three currents are below the current setting value.

<u>Criteria of "Live line" state</u>: all three phase voltages are above the voltage setting value.

The details are described in the document **Dead line detection protection function block description**.

Technical data

Function	Value	Accuracy
Pick-up voltage		1%
Operation time	<20ms	
Reset ratio	0.95	

Table 104 Technical data of the dead line detection function

Parameters

Integer parameters Parameter name Title Unit Min Max Step Default Integer parameters of the dead line detection function DLD ULev IPar Min. Operate Voltage % 10 100 60 1 DLD ILev IPar Min. Operate Current % 2 100 10 1

Table 105 The integer parameters of the dead line detection function

2.5.1.22 Voltage transformer supervision function (VTS60)

The voltage transformer supervision function generates a signal to indicate an error in the voltage transformer secondary circuit. This signal can serve, for example, as a warning, indicating disturbances in the measurement, or it can disable the operation of the distance protection function if appropriate measured voltage signals are not available for a distance decision.

The voltage transformer supervision function is designed to detect faulty asymmetrical states of the voltage transformer circuit caused, for example, by a broken conductor in the secondary circuit.

(Another method for detecting voltage disturbances is the supervision of the auxiliary contacts of the miniature circuit breakers in the voltage transformer secondary circuits. This function is not described here.)

The user has to generate graphic equations for the application of the signal of this voltage transformer supervision function.

This function is interconnected with the "dead line detection function". Although the dead line detection function is described fully in a separate document, the explanation necessary to understand the operation of the VT supervision function is repeated also in this document.

The voltage transformer supervision function can be used in three different modes of application:

Zero sequence detection (for typical applications in systems with grounded neutral): "VT failure" signal is generated if the residual voltage (3Uo) is above the preset voltage value AND the residual current (3Io) is below the preset current value.

<u>Negative sequence detection</u> (for typical applications in systems with isolated or resonant grounded (Petersen) neutral): "VT failure" signal is generated if the negative sequence voltage component (U2) is above the preset voltage value AND the negative sequence current component (I2) is below the preset current value.

<u>Special application</u>: "VT failure" signal is generated if the residual voltage (3Uo) is above the preset voltage value AND the residual current (3Io) AND the negative sequence current component (I2) are below the preset current values.

The voltage transformer supervision function can be activated if "Live line" status is detected for at least 200 ms. This delay avoids mal-operation at line energizing if the poles of the circuit breaker make contact with a time delay. The function is set to be inactive if "Dead line" status is detected.

If the conditions specified by the selected mode of operation are fulfilled (for at least 4 milliseconds) then the voltage transformer supervision function is activated and the operation signal is generated. (When evaluating this time delay, the natural operating time of the applied Fourier algorithm must also be considered.)

NOTE: For the operation of the voltage transformer supervision function the "Dead line detection function" must be operable as well: it must be enabled by binary parameter setting, and its blocking signal may not be active.

If, in the active state, the conditions for operation are no longer fulfilled, the resetting of the function depends on the mode of operation of the primary circuit:

- If the "Live line" state is valid, then the function resets after approx. 200 ms of time delay. (When evaluating this time delay, the natural operating time of the applied Fourier algorithm must also be considered.)
- If the "Dead line" state is started and the "VTS Failure" signal has been continuous for at least 100 ms, then the "VTS failure" signal does not reset; it is generated continuously even when the line is in a disconnected state. Thus, the "VTS Failure" signal remains active at reclosing.
- If the "Dead line" state is started and the "VTS Failure" signal has not been continuous for at least 100 ms, then the "VTS failure" signal resets.

Technical data

Function	Value	Accuracy
Pick-up voltage		
lo=0A		<1%
I2=0A		<1%
Operation time	<20ms	
Reset ratio	0.95	

Table 106 Technical data of the voltage transformer supervision function

Parameters

Integer parameters

Parameter name	Title	Unit	Min	Max	Step	Default	
Integer parameters of the dead line detection function							
DLD_ULev_IPar_ Min Operate Voltage % 10					1	60	
DLD_ILev_IPar_	Min Operate Current	%	2	100	1	10	
Starting voltage and curre	ent parameter for residual	and nega	tive seq	uence d	letection	:	
VTS_Uo_IPar_	Start URes	%	5	50	1	30	
VTS_lo_lPar_	Start IRes	%	10	50	1	10	
VTS_Uneg_IPar_	Start UNeg	%	5	50	1	10	
VTS_Ineg_IPar_	Start INeg	%	10	50	1	10	

Table 107 The integer parameters of the voltage transformer supervision function

Enumerated parameter						
Parameter name	Title	Selection range	Default			
Parameter for type selection						
VTS_Oper_EPar_	Operation	Off, Zero sequence, Neg. sequence, Special	Zero sequence			

Table 108 The enumerated parameter of the voltage transformer supervision function

2.5.1.23 Current unbalance function (VCB60)

The current unbalance protection function (VCB60) can be applied to detect unexpected asymmetry in current measurement.

The applied method selects maximum and minimum phase currents (RMS value of the fundamental Fourier components). If the difference between them is above the setting limit, the function generates a start signal. It is a necessary precondition of start signal generation that the maximum of the currents be above 10 % of the rated current and below 150% of the rated current.

The Fourier calculation modules calculate the RMS value of the basic Fourier current components of the phase currents individually. They are not part of the VCB60 function; they belong to the preparatory phase.

The analog signal processing module processes the RMS value of the basic Fourier current components of the phase currents to prepare the signals for the decision. It calculates the maximum and the minimum value of the RMS values and the difference between the maximum and minimum of the RMS values of the fundamental Fourier components of the phase currents as a percentage of the maximum of these values (ΔI). If the maximum of the currents is above 10 % of the rated current and below 150% of the rated current and the ΔI value is above the limit defined by the preset parameter (Start Current Diff) an output is generated to the decision module.

The decision logic module combines the status signals to generate the starting signal and the trip command of the function.

The trip command is generated after the defined time delay if trip command is enabled by the Boolean parameter setting.

The function can be disabled by parameter setting, and by an input signal programmed by the user with the graphic programming tool.

Function	Value	Accuracy	
Pick-up starting accuracy at In		< 2 %	
Reset ratio	0.95		
Operate time	70 ms		

Technical data

 Table 109 Technical data of the current unbalance function

Parameters

Enumerated parameter						
Parameter name	Title	Selection range	Default			
Selection of the operating mode						
VCB60_Oper_EPar_	Operation	Off, On	On			

Table 110 The enumerated parameter of the current unbalance function

Boolean parameter

Parameter name	Title	Explanation	Default	
Selection for trip command				
VCB60_StOnly_BPar_	Start Signal Only	0 to generate trip command	0	

Table 111 The boolean parameter of the current unbalance function

Integer parameter								
Parameter name	Title	Unit	Min	Max	Step	Default		
Phase difference current setting								
VCB60_StCurr_IPar_	Start Current Diff	%	10	90	1	50		

Table 112 The integer parameter of the current unbalance function

Timer parameter						
Parameter name	Title	Unit	Min	Max	Step	Default
Time delay						
VCB60_Del_TPar_	Time Delay	msec	100	60000	100	1000

Table 113 The timer parameter of the current unbalance function

2.5.1.24 Breaker failure protection function (BRF50MV)

After a protection function generates a trip command, it is expected that the circuit breaker opens and the fault current drops below the pre-defined normal level.

If not, then an additional trip command must be generated for all backup circuit breakers to clear the fault. At the same time, if required, a repeated trip command can be generated to the circuit breakers which are a priori expected to open.

The breaker failure protection function can be applied to perform this task.

The starting signal of the breaker failure protection function is usually the trip command of any other protection function. The user has the task to define these starting signals using the graphic equation editor as the "General Start" (BRF50MV_GenSt_GrO_). Individually phase starting is not available in the version of the function block described in this document. If these are needed, the function block "Breaker failure protection for solidly grounded networks" has to be used.

Dedicated timer starts at the rising edge of the general start signal for the backup trip command. During the running time of the timer the function optionally monitors the currents, the closed state of the circuit breakers or both, according to the user's choice. The selection is made using an enumerated parameter.

If current supervision is selected by the user then the current limit values must be set correctly. The binary input indicating the status of the circuit breaker has no meaning.

If contact supervision is selected by the user then the current limit values have no meaning. The binary input indicating the status of the circuit breaker must be programmed correctly using the graphic equation editor.

If the parameter selection is "Current/Contact", the current parameters and the status signal must be set correctly. The breaker failure protection function resets only if all conditions for faultless state are fulfilled.

If at the end of the running time of the backup timer the currents do not drop below the predefined level, and/or the monitored circuit breaker is still in closed position, then a backup trip command is generated.

The pulse duration of the trip command is not shorter than the time defined by setting the parameter Pulse length.

The breaker failure protection function can be disabled by setting the enabling parameter to "Off".

Dynamic blocking (inhibition) is possible using the binary input Block. The conditions are to be programmed by the user, using the graphic equation editor.

Technical data

Function	Effective range	Accuracy
Current accuracy		<2 %
BF time accuracy		<u>+</u> 5 ms
Current reset time	20 ms	

Parameters

Enumerated parameters

Parameter name Title Selection range		Default	
Selection of the operating	mode		
BRF50MV_Oper_EPar_	Operation	Off, Current, Contact, Current/Contact	Off

Integer parameter

integer parameter						
Parameter name	Title	Unit	Min	Max	Step	Default
Phase current setting						
BRF50MV_StCurrPh_IPa	Start Ph Current	%	20	200	1	30
r						
Neutral current setting						
BRF50MV_StCurrN_IPar	Start Res Current	%	10	200	1	20
_						

Timer parameters

Parameter name	Title	Unit	Min	Max	Step	Default
Time delay for trip command generation for the backup circuit breaker(s)						
BRF50MV_BUDel_TPar_	Backup Time Delay	msec	60	1000	1	200
Trip command impulse duration						
BRF50MV_Pulse_TPar_	Pulse Duration	msec	0	60000	1	100

2.5.1.25 Trip logic (TRC94)

The simple trip logic function operates according to the functionality required by the IEC 61850 standard for the "Trip logic logical node". This simplified software module can be applied if only three-phase trip commands are required, that is, phase selectivity is not applied.

The function receives the trip requirements of the protective functions implemented in the device and combines the binary signals and parameters to the outputs of the device.

The trip requirements are programmed by the user, using the graphic equation editor. The aim of the decision logic is

- to define a minimal impulse duration even if the protection functions detect a very short-time fault.
- •

Technical data		
Function		Accuracy
Impulse time duration	Setting value	<3 ms

Table 114 Technical data of the simple trip logic function

Parameters

Enumerated parameter						
Title	Selection range	Default				
Selection of the operating mode						
TRC94_Oper_EPar_ Operation Off, On On						
	mode	mode				

Tables 115 The enumerated parameter of the decision logic

Timer parameter

Parameter name	Title	Unit	Min	Max	Step	Default
Minimum duration of the generated impulse						
TRC94_TrPu_TPar_ Min Pulse Duration msec 50 60000 1 150						150

Table 116 Timer parameter of the decision logic

2.5.1.26 Circuit breaker control function block (CB1Pol)

The Circuit breaker control function block can be used to integrate the circuit breaker control of the EuroProt+ device into the station control system and to apply active scheme screens of the local LCD of the device.

The Circuit breaker control function block receives remote commands from the SCADA system and local commands from the local LCD of the device, performs the prescribed checking and transmits the commands to the circuit breaker. It processes the status signals received from the circuit breaker and offers them to the status display of the local LCD and to the SCADA system.

Main features:

- Local (LCD of the device) and Remote (SCADA) operation modes can be enabled or disabled individually.
- The signals and commands of the synchro check / synchro switch function block can be integrated into the operation of the function block.
- Interlocking functions can be programmed by the user applying the inputs "EnaOff" (enabled trip command) and "EnaOn" (enabled close command), using the graphic equation editor.
- Programmed conditions can be used to temporarily disable the operation of the function block using the graphic equation editor.
- The function block supports the control models prescribed by the IEC 61850 standard.
- All necessary timing tasks are performed within the function block:
 - Time limitation to execute a command
 - Command pulse duration
 - o Filtering the intermediate state of the circuit breaker
 - Checking the synchro check and synchro switch times
 - o Controlling the individual steps of the manual commands
- Sending trip and close commands to the circuit breaker (to be combined with the trip commands of the protection functions and with the close command of the automatic reclosing function; the protection functions and the automatic reclosing function directly gives commands to the CB). The combination is made graphically using the graphic equation editor
 - Operation counter
- Event reporting

The Circuit breaker control function block has binary input signals. The conditions are defined by the user applying the graphic equation editor. The signals of the circuit breaker control are seen in the binary input status list.

Technical data	
Function	Accuracy
Operate time accuracy	±5% or ±15 ms, whichever is greater

Table 117 Technical data of the circuit breaker control function

Parameters Enumerated parameter

Parameter name	Title	Selection range	Default	
The control model of the circuit breaker node according to the IEC 61850 standard				
CB1Pol_ctlMod_EPar_	ControlModel*	Direct normal, Direct enhanced, SBO enhanced	Direct normal	

*ControlModel

- Direct normal: only command transmission
- Direct enhanced: command transmission with status check and command supervision
- SBO enhanced: Select Before Operate mode with status check and command supervision

Table 118 Enumerated parameter of the circuit breaker control function

Boolean parameter		
Boolean parameter	Title	Explanation
CB1Pol_DisOverR_BPar_	Forced check	If true, then the check function cannot be neglected by the check attribute defined by the IEC 61850 standard

Table 119 Boolean parameter of the circuit breaker control function

Timer parameters								
Parameter name	Title	Unit	Min	Max	Step	Default		
Timeout for signaling failed o	peration							
CB1Pol_TimOut_TPar_ Max.Operating time msec 10 1000 1 2						200		
Duration of the generated On and Off impulse								
CB1Pol_Pulse_TPar_,	Pulse length	msec	50	500	1	100		
Waiting time, at expiry interm	ediate state of the CB	is reported						
CB1Pol_MidPos_TPar_	Max.Intermediate time	msec	20	30000	1	100		
Length of the time period to the synchro switch procedu description)								
CB1Pol_SynTimOut_TPar_	Max.SynChk time	msec	10	5000	1	1000		
Length of the time period to switch function block descrip								
CB1Pol_SynSWTimOut_ TPar_	Max.SynSW time*	msec	0	60000	1	0		
Duration of the waiting time command is performed	Duration of the waiting time between object selection and command selection. At timeout no							
CB1Pol_SBOTimeout_ TPar	SBO Timeout	msec	1000	20000	1	5000		

* If this parameter is set to 0, then the "StartSW" output is not activated

Table 120 Timer parameters of the circuit breaker control function

Available internal status variable and command channel

To generate an active scheme on the local LCD, there is an internal status variable indicating the state of the circuit breaker. Different graphic symbols can be assigned to the values. (See Chapter 3.2 of the document "EuroCAP configuration tool for EuroProt+ devices").

Status variable	Title	Explanation	
		Can be:	
		0: Intermediate	
CB1Pol_stVal_lst_	Status	1: Off	
		2: On	
		3: Bad	

The available control channel to be selected is:

Command channel	Title	Explanation
CB1Pol_Oper_Con_	Operation	Can be: On
		Off

Using this channel, the pushbuttons on the front panel of the device can be assigned to close or open the circuit breaker. These are the "Local commands".

2.5.1.27 Disconnector control function (DisConn)

The Disconnector control function block can be used to integrate the disconnector control of the EuroProt+ device into the station control system and to apply active scheme screens of the local LCD of the device.

The Disconnector control function block receives remote commands from the SCADA system and local commands from the local LCD of the device, performs the prescribed checking and transmits the commands to the disconnector. It processes the status signals received from the disconnector and offers them to the status display of the local LCD and to the SCADA system.

Main features:

- Local (LCD of the device) and Remote (SCADA) operation modes can be enabled or disabled individually.
- Interlocking functions can be programmed by the user applying the inputs "EnaOff" (enabled trip command) and "EnaOn" (enabled close command), using the graphic equation editor.
- Programmed conditions can be used to temporarily disable the operation of the function block using the graphic equation editor.
- The function block supports the control models prescribed by the IEC 61850 standard.
- All necessary timing tasks are performed within the function block:
 - Time limitation to execute a command
 - o Command pulse duration
 - o Filtering the intermediate state of the disconnector
 - Controlling the individual steps of the manual commands
- Sending trip and close commands to the disconnector
- Operation counter
- Event reporting

The Disconnector control function block has binary input signals. The conditions are defined by the user applying the graphic equation editor. The signals of the disconnector control are seen in the binary input status list.

Technical data

Function	Accuracy
Operate time accuracy	±5% or ±15 ms, whichever is greater

Table 121 Technical data of the disconnector control function

Parameters

Enumerated parameters

Parameter name	Title	Selection range	Default
The control model of the disconnector node according to the IEC 61850 standard			
DisConn_ctlMod_EPar_	ControlModel*	Direct normal, Direct enhanced, SBO enhanced	Direct normal
Type of switch			
DisConn_SwTyp_EPar_	Type of Switch	N/A,Load break, Disconnector, Earthing Switch, HS Earthing Switch	Disconnector

*ControlModel

- Direct normal: only command transmission
- Direct enhanced: command transmission with status check and command supervision
- SBO enhanced: Select Before Operate mode with status check and command supervision

Table 122 Enumerated parameters of the disconnector control function

Boolean parameter			
Boolean parameter	Title	Explanation	
DisConn_DisOverR_BPar_	Forced check	If true, then the check function cannot be neglected by the check attribute defined by the IEC 61850 standard	

Table 123 Boolean parameter of the disconnector control function

Timer parameters						
Parameter name	Title	Unit	Min	Max	Step	Default
Timeout for signaling failed o	peration					
DisConn_TimOut_TPar_	Max.Operating time	msec	10	20000	1	1000
Duration of the generated Or	Duration of the generated On and Off impulse					
DisConn_Pulse_TPar_	Pulse length	msec	50	30000	1	100
Waiting time, at expiry intermediate state of the disconnector is reported						
DisConn_MidPos_TPar_	Max.Intermediate time	msec	20	30000	1	100
Duration of the waiting time between object selection and command selection. At timeout no command is performed						
DisConn_SBOTimeout_ TPar_	SBO Timeout	msec	1000	20000	1	5000

Table 124 Timer parameters of the disconnector control function

Available internal status variable and command channel

To generate an active scheme on the local LCD, there is an internal status variable indicating the state of the disconnector. Different graphic symbols can be assigned to the values. (See Chapter 3.2 of the document "EuroCAP configuration tool for EuroProt+ devices").

Status variable	Title	Explanation	
		Can be:	
		0: Intermediate	
DisConn I_stVal_lst_	Status	1: Off	
		2: On	
		3:Bad	

The available control channel to be selected is:

Command channel	Title	Explanation
		Can be:
DisConn _Oper_Con_	Operation	On
		Off

Using this channel, the pushbuttons on the front panel of the device can be assigned to close or open the disconnector. These are the "Local commands".

2.5.2 Measuring functions

The measured values can be checked on the touch-screen of the device in the "On-line functions" page, or using an Internet browser of a connected computer. The displayed values are secondary voltages and currents, except the block "Line measurement". This specific block displays the measured values in primary units, using VT and CT primary value settings.

Analog value	Explanation
VT4 module	
Voltage Ch – U1	RMS value of the Fourier fundamental harmonic voltage component in phase L1

Angle Ch – U1	Phase angle of the Fourier fundamental harmonic voltage component in phase L1*	
Voltage Ch – U2	RMS value of the Fourier fundamental harmonic voltage component in phase L2	
Angle Ch – U2	Phase angle of the Fourier fundamental harmonic voltage component in phase L2*	
Voltage Ch – U3	RMS value of the Fourier fundamental harmonic voltage component in phase L3	
Angle Ch – U3	Phase angle of the Fourier fundamental harmonic voltage component in phase L3*	
Voltage Ch – U4	RMS value of the Fourier fundamental harmonic voltage component in Channel U4	
Angle Ch – U4	Phase angle of the Fourier fundamental harmonic voltage component in Channel U4*	
CT4 module	·	
Current Ch - I1	RMS value of the Fourier fundamental harmonic current component in phase L1	
Angle Ch - I1	Phase angle of the Fourier fundamental harmonic current component in phase L1*	
Current Ch - I2	RMS value of the Fourier fundamental harmonic current component in phase L2	
Angle Ch - I2	Phase angle of the Fourier fundamental harmonic current compor in phase L2*	
Current Ch - I3	RMS value of the Fourier fundamental harmonic current component in phase L3	
Angle Ch - I3	Phase angle of the Fourier fundamental harmonic current component in phase L3*	
Current Ch - I4	RMS value of the Fourier fundamental harmonic current component in Channel I4	
Angle Ch - I4	Phase angle of the Fourier fundamental harmonic current component in Channel I4*	
Distance protection fu	inction (DIS21_MV)	
Fault location	Measured distance to fault	
Fault react.	Measured reactance in the fault loop	
L12 loop R	Resistive component value of impedance in L12 loop	
L12 loop X	Reactive component value of impedance in L12 loop	
L23 loop R	Resistive component value of impedance in L23 loop	
L23 loop X	Reactive component value of impedance in L23 loop	
L31 loop R	Resistive component value of impedance in L31 loop	
L31 loop X	Reactive component value of impedance in L31 loop	

*

Synchrocheck function (SYN25)			
Voltage Diff	Voltage different value		
Frequency Diff	Frequency different value		
Angle Diff	Angle different value		
Line measurement (M.	XU_L) (here the displayed information means primary value)		
Active Power – P	Three-phase active power		
Reactive Power – Q	Three-phase reactive power		
Apparent Power – S	Three-phase power based on true RMS voltage and current		
	measurement		
Current L1	True RMS value of the current in phase L1		
Current L2 True RMS value of the current in phase L2			
Current L3 True RMS value of the current in phase L3			
Voltage L1	True RMS value of the voltage in phase L1		
Voltage L2	True RMS value of the voltage in phase L2		
Voltage L3	True RMS value of the voltage in phase L3		
Voltage L12	True RMS value of the voltage between phases L1 L2		
Voltage L23	True RMS value of the voltage between phases L2 L3		
Voltage L31	True RMS value of the voltage between phases L3 L1		
Frequency	Frequency		

The reference angle is the phase angle of "Voltage Ch - U1"

Table 125 Measured analog values

2.5.2.1 Voltage input function (VT4)

If the factory configuration includes a voltage transformer hardware module, the voltage input function block is automatically configured among the software function blocks. Separate voltage input function blocks are assigned to each voltage transformer hardware module.

A voltage transformer hardware module is equipped with four special intermediate voltage transformers. (See Chapter 6 of the EuroProt+ hardware description document.) As usual, the first three voltage inputs receive the three phase voltages (UL1, UL2, UL3), the fourth input is reserved for zero sequence voltage or for a voltage from the other side of the circuit breaker for synchron switching. All inputs have a common parameter for type selection: 100V or 200V.

Additionally, there is a correction factor available if the rated secondary voltage of the main voltage transformer (e.g. 110V) does not match the rated input of the device.

The role of the voltage input function block is to

- set the required parameters associated to the voltage inputs,
- deliver the sampled voltage values for disturbance recording,
- perform the basic calculations
 - Fourier basic harmonic magnitude and angle,
 - True RMS value;
- provide the pre-calculated voltage values to the subsequent software modules,
- deliver the basic calculated values for on-line displaying.

Operation of the voltage input algorithm

The voltage input function block receives the sampled voltage values from the internal operating system. The scaling (even hardware scaling) depends on parameter setting. See the parameter VT4_Type_EPar_ (Range). The options to choose from are 100V or 200V. This parameter influences the internal number format and, naturally, accuracy. (A small voltage is processed with finer resolution if 100V is selected.)

The connection of the first three VT secondary winding must be set to reflect actual physical connection. The associated parameter is VT4_Ch13Nom_EPar_ (Connection U1-3). The selection can be: Ph-N, Ph-Ph or Ph-N-Isolated.

The Ph-N option is applied in solidly grounded networks, where the measured phase voltage is never above 1.5-Un. In this case the primary rated voltage of the VT must be the value of the rated PHASE-TO-NEUTRAL voltage.

The Ph-N option is applied in compensated or isolated networks, where the measured phase voltage can be above 1.5-Un even in normal operation. In this case the primary rated voltage of the VT must be the value of the rated PHASE-TO-PHASE voltage.

If phase-to-phase voltage is connected to the VT input of the device, then the Ph-Ph option is to be selected. Here, the primary rated voltage of the VT must be the value of the rated PHASE-TO-PHASE voltage. This option must not be selected if the distance protection function is supplied from the VT input.

The fourth input is reserved for zero sequence voltage or for a voltage from the other side of the circuit breaker for synchron switching. Accordingly, the connected voltage must be identified with parameter setting VT4_Ch4Nom_EPar_ (Connection U4). Here, phase-to-neutral or phase-to-phase voltage can be selected: Ph-N,Ph-Ph

If needed, the phase voltages can be inverted by setting the parameter VT4_Ch13Dir_EPar_ (Direction U1-3). This selection applies to each of the channels UL1, UL2 and UL3. The fourth voltage channel can be inverted by setting the parameter VT4_Ch4Dir_EPar_ (Direction U4). This inversion may be needed in protection functions such as distance protection, differential protection or for any functions with directional decision, or for checking the voltage vector positions. Additionally, there is a correction factor available if the rated secondary voltage of the main voltage transformer (e.g. 110V) does not match the rated input of the device. The related parameter is VT4_CorrFact_IPar_ (VT correction). As an example: if the rated secondary voltage of the main voltage transformer is 110V, then select Type 100 for the parameter "Range" and the required value to set here is 110%.

These sampled values are available for further processing and for disturbance recording.

The performed basic calculation results the Fourier basic harmonic magnitude and angle and the true RMS value of the voltages. These results are processed by subsequent protection function blocks and they are available for on-line displaying as well.

The function block also provides parameters for setting the primary rated voltages of the main voltage transformer. This function block does not need that parameter setting. These values are passed on to function blocks such as displaying primary measured values, primary power calculation, etc. Concerning the rated voltage, see the instructions related to the parameter for the connection of the first three VT secondary winding.

Parameters

Enumerated parameters				
Parameter name	Title Selection range Defa			
Rated secondary voltage of the input channels. 100 V or 200V is selected by parameter setting, no hardware modification is needed.				
VT4_Type_EPar_	Range	Type 100,Type 200	Type 100	
Connection of the first three	ee voltage inputs (main VT s	econdary)		
VT4_Ch13Nom_EPar_	Connection U1-3	Ph-N, Ph-Ph, Ph-N-Isolated	Ph-N	
Selection of the fourth cha	annel input: phase-to-neutral	or phase-to-phase voltage	e	
VT4_Ch4Nom_EPar_	Connection U4	Ph-N,Ph-Ph	Ph-Ph	
Definition of the positive direction of the first three input channels, given as normal or inverted				
VT4_Ch13Dir_EPar_	Direction U1-3	Normal, Inverted	Normal	
Definition of the positive direction of the fourth voltage, given as normal or inverted				
VT4_Ch4Dir_EPar_	Direction U4	Normal, Inverted	Normal	

Table 126 The enumerated parameters of the voltage input function

Integer parameter						
Parameter name	Title	Unit	Min	Max	Step	Default
Voltage correction						
VT4_CorrFact_IPar_	VT correction	%	100	115	1	100

Table 127 The integer parameter of the voltage input function

Floating point parameters					
Parameter name	Title	Dim.	Min	Max	Default
Rated primary voltage of c	hannel1				
VT4_PriU1_FPar	Rated Primary U1	kV	1	1000	100
Rated primary voltage of channel2					
VT4_PriU2_FPar	Rated Primary U2 kV 1 100		1000	100	
Rated primary voltage of channel3					
VT4_PriU3_FPar	Rated Primary U3 kV 1 1000		1000	100	
Rated primary voltage of channel4					
VT4_PriU4_FPar	Rated Primary U4 kV 1 1000		1000	100	

Table 128 The floating point parameters of the voltage input function

NOTE: The rated primary voltage of the channels is not needed for the voltage input function block itself. These values are passed on to the subsequent function blocks.

Function	Range	Accuracy
Voltage accuracy	30% 130%	< 0.5 %

Table 129 Technical data of the voltage input

Measured values

Measured value	Dim.	Explanation
Voltage Ch - U1	V(secondary)	Fourier basic component of the voltage in channel UL1
Angle Ch - U1	degree	Vector position of the voltage in channel UL1
Voltage Ch – U2	V(secondary)	Fourier basic component of the voltage in channel UL2
Angle Ch – U2	degree	Vector position of the voltage in channel UL2
Voltage Ch – U3	V(secondary)	Fourier basic component of the voltage in channel UL3
Angle Ch – U3	degree	Vector position of the voltage in channel UL3
Voltage Ch – U4	V(secondary)	Fourier basic component of the voltage in channel U4
Angle Ch – U4	degree	Vector position of the voltage in channel U4

Table 130 The measured analogue values of the voltage input function

NOTE1: The scaling of the Fourier basic component is such <u>if</u> pure sinusoid 57V RMS of the rated frequency is injected, the displayed value is 57V. (The displayed value does not depend on the parameter setting values "Rated Secondary".)

NOTE2: The reference vector (vector with angle 0 degree) is the vector calculated for the first voltage input channel of the first applied voltage input module.

The figure below shows an example of how the calculated Fourier components are displayed in the on-line block. (See the document EuroProt+ "Remote user interface description".)

Voltage Ch - U1	56.75	v
Angle Ch - U1	0	deç
Voltage Ch - U2	51.46	¥
Angle Ch - U2	-112	deg
Voltage Ch - U3	60.54	¥
Angle Ch - U3	128	deç
Voltage Ch - U4	0.00	۷
Angle Ch - U4	0	deg

Figure 6 Example: On-line displayed values for the voltage input module

2.5.2.2 Current input function (CT4)

If the factory configuration includes a current transformer hardware module, the current input function block is automatically configured among the software function blocks. Separate current input function blocks are assigned to each current transformer hardware module.

A current transformer hardware module is equipped with four special intermediate current transformers. (See Chapter 5 of the EuroProt+ hardware description document.) As usual, the first three current inputs receive the three phase currents (IL1, IL2, IL3), the fourth input is reserved for zero sequence current, for the zero sequence current of the parallel line or for any additional current. Accordingly, the first three inputs have common parameters while the fourth current input needs individual setting.

The role of the current input function block is to

- set the required parameters associated to the current inputs,
- deliver the sampled current values for disturbance recording,
- perform the basic calculations
 - Fourier basic harmonic magnitude and angle,
 - True RMS value;
- provide the pre-calculated current values to the subsequent software modules,
- deliver the basic calculated values for on-line displaying.

Operation of the current input algorithm

The current input function block receives the sampled current values from the internal operating system. The scaling (even hardware scaling) depends on parameter setting. See parameters CT4_Ch13Nom_EPar_ (Rated Secondary I1-3) and CT4_Ch4Nom_EPar_ (Rated Secondary I4). The options to choose from are 1A or 5A (in special applications, 0.2A or 1A). This parameter influences the internal number format and, naturally, accuracy. (A small current is processed with finer resolution if 1A is selected.)

If needed, the phase currents can be inverted by setting the parameter CT4_Ch13Dir_EPar_ (Starpoint I1-3). This selection applies to each of the channels IL1, IL2 and IL3. The fourth current channel can be inverted by setting the parameter CT4_Ch4Dir_EPar (Direction I4). This inversion may be needed in protection functions such as distance protection, differential protection or for any functions with directional decision.

These sampled values are available for further processing and for disturbance recording.

The performed basic calculation results the Fourier basic harmonic magnitude and angle and the true RMS value. These results are processed by subsequent protection function blocks and they are available for on-line displaying as well.

The function block also provides parameters for setting the primary rated currents of the main current transformer. This function block does not need that parameter setting. These values are passed on to function blocks such as displaying primary measured values, primary power calculation, etc.

Technical data

Function	Range	Accuracy
Current accuracy	20 – 2000% of In	±1% of In

Table 131 Technical data of the current input

Parameters

Enumerated parameters					
Parameter name	Title	Selection range	Default		
Rated secondary current of the first three input channels. 1A or 5A is selected by parameter setting, no hardware modification is needed.					
CT4_Ch13Nom_EPar_	Rated Secondary I1-3	1A,5A	1A		
Rated secondary current of the fourth input channel. 1A or 5A is selected by parameter setting, no hardware modification is needed.					
CT4_Ch4Nom_EPar_	Rated Secondary I4	1A,5A (0.2A or 1A)	1A		
Definition of the positive direction of the first three currents, given by location of the secondary star connection point					
CT4_Ch13Dir_EPar_	Starpoint I1-3	Line,Bus	Line		
Definition of the positive direction of the fourth current, given as normal or inverted					
CT4_Ch4Dir_EPar_	Direction I4	Normal, Inverted	Normal		

Table 132 The enumerated parameters of the current input function

Floating point parameters						
Parameter name	Title	Dim.	Min	Max	Default	
Rated primary current of channel1						
CT4_Pril1_FPar_	Rated Primary I1	Rated Primary I1 A 100 4000				
Rated primary current of channel2						
CT4_Pril2_FPar	Rated Primary I2	А	100	4000	1000	
Rated primary current of channel3						
CT4_Pril3_FPar_	Rated Primary I3 A 100 40		4000	1000		
Rated primary current of channel4						
CT4_Pril4_FPar_	Rated Primary I4	А	100	4000	1000	

Table 133 The floating point parameters of the current input function

NOTE: The rated primary current of the channels is not needed for the current input function block itself. These values are passed on to the subsequent function blocks.

The measured values of the current input function block.

Measured value	Dim.	Explanation
Current Ch - I1	A(secondary)	Fourier basic component of the current in channel IL1
Angle Ch - I1	degree	Vector position of the current in channel IL1
Current Ch – I2	A(secondary)	Fourier basic component of the current in channel IL2
Angle Ch – I2	degree	Vector position of the current in channel IL2
Current Ch – I3	A(secondary)	Fourier basic component of the current in channel IL3
Angle Ch – I3	degree	Vector position of the current in channel IL3
Current Ch – I4	A(secondary)	Fourier basic component of the current in channel I4
Angle Ch – I4	degree	Vector position of the current in channel I4

Table 134 The measured analogue values of the current input function

NOTE1: The scaling of the Fourier basic component is such that if pure sinusoid 1A RMS of the rated frequency is injected, the displayed value is 1A. (The displayed value does not depend on the parameter setting values "Rated Secondary".)

NOTE2: The reference of the vector position depends on the device configuration. If a voltage input module is included, then the reference vector (vector with angle 0 degree) is the vector calculated for the first voltage input channel of the first applied voltage input module. If no voltage input module is configured, then the reference vector (vector with angle 0 degree)

is the vector calculated for the first current input channel of the first applied current input module.

The following image shows an example of how the calculated Fourier components are displayed in the on-line block. (See the document "EuroProt+ Remote user interface description".)

Current Ch - I1	0.84	Α
Angle Ch - I1	-9	deg
Current Ch - I2	0.84	А
Angle Ch - I2	-129	deg
Current Ch - I3	0.85	A
Angle Ch - I3	111	deg
Current Ch - I4	0.00	Α
Angle Ch - I4	0	deg

Figure 7 Example: On-line displayed values for the current input module

2.5.2.3 Line measurement function (MXU)

The measurement

The input values of the EuroProt+ devices are the secondary signals of the voltage transformers and those of the current transformers.

These signals are pre-processed by the "Voltage transformer input" function block and by the "Current transformer input" function block. These function blocks are described in separate documents. The pre-processed values include the Fourier basic harmonic phasors of the voltages and currents and the true RMS values. Additionally, it is in these function blocks that parameters are set concerning the voltage ratio of the primary voltage transformers and current transformers.

Based on the pre-processed values and the measured transformer parameters, the "Line measurement" function block calculates - depending on the hardware and software configuration - the primary RMS values of the voltages and currents and some additional values such as active and reactive power, symmetrical components of voltages and currents. These values are available as primary quantities and they can be displayed on the on-line screen of the device or on the remote user interface of the computers connected to the communication network and they are available for the SCADA system using the configured communication system.

Reporting the measured values and the changes

It is usual for the SCADA systems that they sample the measured and calculated values in regular time periods and additionally they receive the changed values as reports at the moment when any significant change is detected in the primary system. The "Line measurement" function block is able to perform such reporting for the SCADA system.

Operation of the line measurement function block

The **inputs** of the line measurement function are

- the Fourier components and true RMS values of the measured voltages and currents,
- frequency measurement,
- parameters.

The **outputs** of the line measurement function are

- displayed measured values,
- reports to the SCADA system.

NOTE: the scaling values are entered as parameter setting for the "Voltage transformer input" function block and for the "Current transformer input" function block.

The measured values

The **measured values** of the line measurement function depend on the hardware configuration. As an example, Table *135* shows the list of the measured values available in a configuration for solidly grounded networks.

Measured value	Explanation
MXU_P_OLM_	Active Power – P (Fourier base harmonic value)
MXU_Q_OLM_	Reactive Power – Q (Fourier base harmonic value)
MXU_S_OLM_	Apparent Power – S (Fourier base harmonic value)
MXU_I1_OLM_	Current L1
MXU_I2_OLM_	Current L2
MXU_I3_OLM_	Current L3
MXU_U1_OLM_	Voltage L1
MXU_U2_OLM_	Voltage L2
MXU_U3_OLM_	Voltage L3
MXU_U12_OLM_	Voltage L12
MXU_U23_OLM_	Voltage L23
MXU_U31_OLM_	Voltage L31
MXU_f_OLM_	Frequency

Table 135 Example: Measured values in a configuration for solidly grounded networks

Another example is Figure 8, where the measured values available are shown as on-line information in a configuration for compensated networks.

Active Power - P	17967.19	kW
Reactive Power - Q	10414.57	kVAr
Current L1	97	А
Current L2	97	А
Current L3	97	Α
Voltage L12	120.0	k٧
Voltage L23	120.0	k¥
Voltage L31	120.0	k٧
Residual Voltage	0.0	k¥
Frequency	50.00	Hz

Figure 8 Example: Measured values in a configuration for compensated networks

The available quantities are described in the configuration description documents.

Reporting the measured values and the changes

For reporting, additional information is needed, which is defined in parameter setting. As an example, in a configuration for solidly grounded networks the following parameters are available:

Parameter name	Title	Selection range	Default		
Selection of the reporting mode for active power measurement					
MXU_PRepMode_EPar_	Operation ActivePower	Off, Amplitude, Integrated	Amplitude		
Selection of the reporting n	node for reactive power mea	asurement			
MXU_QRepMode_EPar_	Operation ActivePower	Off, Amplitude, Integrated	Amplitude		
Selection of the reporting n	node for apparent power me	easurement			
MXU_SRepMode_EPar_	Operation ApparPower	Off, Amplitude, Integrated	Amplitude		
Selection of the reporting mode for current measurement					
MXU_IRepMode_EPar_	Operation Current	Off, Amplitude, Integrated Amplitud			
Selection of the reporting mode for voltage measurement					
MXU_URepMode_EPar_	Operation Voltage	Off, Amplitude, Integrated	Amplitude		
Selection of the reporting mode for frequency measurement					
MXU_fRepMode_EPar_	Operation Frequency	Off, Amplitude, Integrated	Amplitude		

Enumerated parameters

Table 136 The enumerated parameters of the line measurement function

The selection of the reporting mode items is explained in Figure 9 and in Figure 10.

"Amplitude" mode of reporting

If the "Amplitude" mode is selected for reporting, a report is generated if the measured value leaves the deadband around the previously reported value. As an example, Figure 9 shows that the current becomes higher than the value reported in "report1" PLUS the Deadband value, this results "report2", etc.

For this mode of operation, the Deadband parameters are explained in Table 137.

The "Range" parameters in Table 137 are needed to evaluate a measurement as "out-of-range".

Floating point parameters						
Parameter name	Title	Dim.	Min	Max	Step	Default
Deadband value for the active power						
MXU_PDeadB_FPar_	Deadband value - P	MW	0.1	100000	0.01	10
Range value for the acti	ve power					
MXU_PRange_FPar_	Range value - P	MW	1	100000	0.01	500
Deadband value for the	reactive power					
MXU_QDeadB_FPar_	Deadband value - Q	MVAr	0.1	100000	0.01	10
Range value for the rea	ctive power					
MXU_QRange_FPar_	Range value - Q	MVAr	1	100000	0.01	500
Deadband value for the	apparent power					
MXU_SDeadB_FPar_	Deadband value - S	MVA	0.1	100000	0.01	10
Range value for the app	parent power					
MXU_SRange_FPar_	Range value - S	MVA	1	100000	0.01	500
Deadband value for the	current					
MXU_IDeadB_FPar_	Deadband value - I	А	1	2000	1	10
Range value for the cur	rent					
MXU_IRange_FPar_	Range value - I	А	1	5000	1	500
Deadband value for the	phase-to-neutral volta	ge				
MXU_UPhDeadB_ FPar_	Deadband value – U ph-N	kV	0.1	100	0.01	1
Range value for the pha	se-to-neutral voltage					
MXU_UPhRange_ FPar_	Range value – U ph-N	kV	1	1000	0.1	231
Deadband value for the	phase-to-phase voltag	je				
MXU_UPPDeadB_ FPar_	Deadband value – U ph-ph	kV	0.1	100	0.01	1
Range value for the pha	se-to-phase voltage					
MXU_UPPRange_ FPar_	Range value – U ph-ph	kV	1	1000	0.1	400
Deadband value for the	current					
MXU_fDeadB_FPar_	Deadband value - f	Hz	0.01	1	0.01	0.02
Range value for the cur	rent					
MXU_fRange_FPar_	Range value - f	Hz	0.05	10	0.01	5

Table 137 The floating-point parameters of the line measurement function

PROTECTA

Amplitude

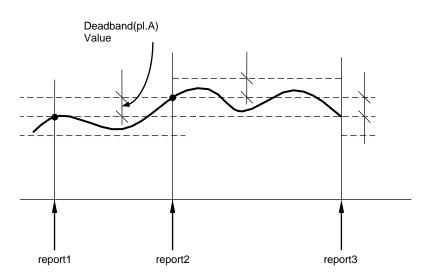


Figure 9 Reporting if "Amplitude" mode is selected

"Integral" mode of reporting

If the "Integrated" mode is selected for reporting, a report is generated if the time integral of the measured value since the last report gets becomes larger, in the positive or negative direction, then the (deadband*1sec) area. As an example, Figure *10* shows that the integral of the current in time becomes higher than the Deadband value multiplied by 1sec, this results "report2", etc.

Integrated

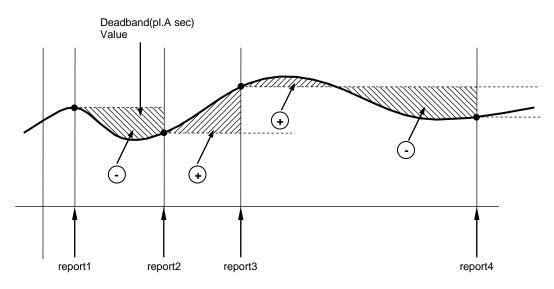


Figure 10 Reporting if "Integrated" mode is selected

Periodic reporting

Periodic reporting is generated independently of the changes of the measured values when the defined time period elapses. The required parameter setting is shown in Table *138*.

Integer parameters

Parameter name	Title	Unit	Min	Max	Step	Default
Reporting time period for the active power						
MXU_PIntPer_IPar_	Report period P	sec	0	3600	1	0
Reporting time period for the rea	active power					
MXU_QIntPer_IPar_	Report period Q	sec	0	3600	1	0
Reporting time period for the ap	Reporting time period for the apparent power					
MXU_SIntPer_IPar_	Report period S	sec	0	3600	1	0
Reporting time period for the voltage						
MXU_UIntPer_IPar_	Report period U	sec	0	3600	1	0
Reporting time period for the current						
MXU_IIntPer_IPar_	Report period I	sec	0	3600	1	0
Reporting time period for the fre	Reporting time period for the frequency					
MXU_fIntPer_IPar_	Report period f	sec	0	3600	1	0

Table 138 The integer parameters of the line measurement function

If the reporting time period is set to 0, then no periodic reporting is performed for this quantity.

All reports can be disabled for a quantity if the reporting mode is set to "Off". See Table 136.

Technical data		
Function	Range	Accuracy
Current accuracy		
with CT/5151 or CT/5102 modules	0,2 ln – 0,5 ln	±2%, ±1 digit
with CT/STST of CT/ST02 modules	0,5 ln – 20 ln	±1%, ±1 digit
with CT/1500 module	0,03 ln – 2 ln	±0,5%, ±1 digit
Voltage accuracy	5 – 150% of Un	±0.5% of Un, ±1 digit
Power accuracy	l>5% ln	±3%, ±1 digit
Frequency accuracy	U>3.5%Un 45Hz – 55Hz	2mHz

Table 139 Technical data of line measurement

2.5.3 Disturbance recorder

The Variant 3 configuration contains a disturbance recorder function. The details are described in the document shown in Table 140.

Name	Title	Document
DRE	Disturbance Rec	Disturbance recorder function block description

The recorded analog cha	nnels:
Recorded analog signal	Explanation
UL1	Measured voltage of line 1
UL2	Measured voltage of line 2
UL3	Measured voltage of line 3
U4	Measured voltage of the fourth voltage input channel (Uo)
IL1	Measured current for all overcurrent protection functions in line 1
IL2	Measured current for all overcurrent protection functions in line 2
IL3	Measured current for all overcurrent protection functions in line 3
14	Measured current of the fourth current input channel (Io)

Table 141 Disturbance recorder, recorded analog channels

The recorded binary channels:

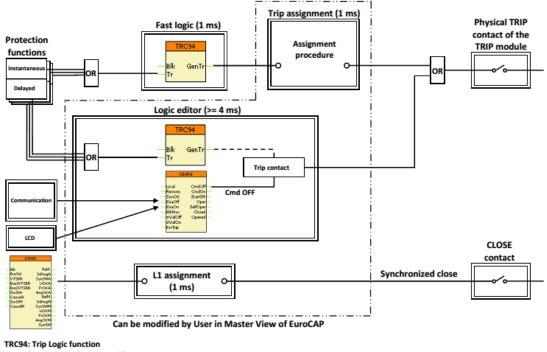
Recorded binary signal	Explanation
Trip	Trip command of the trip logic function
SOTF Trip	Switch-onto-fault trip of the distance prot. function
DIS Start L1	Start signal of the distance prot. function in L1 phase
DIS Start L2	Start signal of the distance prot. function in L2 phase
DIS Start L3	Start signal of the distance prot. function in L3 phase
Z1 Start	Start signal of the distance prot. function in zone 1
Z2 Start	Start signal of the distance prot. function in zone 2
Z3 Start	Start signal of the distance prot. function in zone 3
Z4 Start	Start signal of the distance prot. function in zone 4
Z5 Start	Start signal of the distance prot. function in zone 5
Z1 Trip	Trip command of the distance prot. function in zone 1
Z2 Trip	Trip command of the distance prot. function in zone 2
Z3 Trip	Trip command of the distance prot. function in zone 3
Z4 Trip	Trip command of the distance prot. function in zone 4
Z5 Trip	Trip command of the distance prot. function in zone 5
Inst OC Trip	Trip command of the 3ph instantaneous OC prot. function
Res Inst OC Trip	Trip command of the residual instantaneous OC prot. function
Time OC Start Low	Low setting stage start signal of the 3ph time OC prot. function
Time OC Start High	High setting stage start signal of the 3ph time OC prot. function
Res Time OC Start Low	Low setting stage start signal of the residual time OC prot. function
Res Time OC Start High	High setting stage start signal of the residual time OC prot. function
Therm OL Alarm	Alarm signal of the thermal overload prot.
Dir OC Start Low	Low setting stage start signal of the 3ph directional OC prot. funct.
Dir OC Start High	High setting stage start signal of the 3ph directional OC prot. funct.

Res Dir OC Start Low	Low setting stage start signal of the residual directional OC prot.
Res Dir OC Start High	High setting stage start signal of the residual directional OC prot.
Overfrequ Start Low	Low setting stage start signal of the overfrequency prot. function
Overfrequ Start High	High setting stage start signal of the overfrequency prot. function
Underfrequ Start Low	Low setting stage start signal of the underfrequency prot. function
Underfrequ Start High	High setting stage start signal of the underfrequency prot. function
ROC of Frequ Start	Start signal of the rate of change of frequency prot. function
Overvoltage Start Low	Low setting stage start signal of the definite time overvoltage prot.
Overvoltage Start High	High setting stage start signal of the definite time overvoltage prot.
Res Overvolt Start Low	Low setting stage start signal of the residual overvoltage prot.
Res Overvolt Start High	High setting stage start signal of the residual overvoltage prot.
Undervoltage Start Low	Low setting stage start signal of the definite time undervoltage prot.
Undervoltage Start High	High setting stage start signal of the def. time undervoltage prot.
Unbalance Start	Unbalance signal of the current unbalance prot. function
Release Aut	Release auto signal of the synchrocheck function
REC Blocked	Blocked state of auto reclosing function
REC Close	Close command of auto reclosing function

Table 142 Disturbance recorder, recorded binary channels

Enumerated parameter

Parameter name	Title	Selection range	Default
Parameter for activation			
DRE_Oper_EPar_	Operation	Off, On	Off


Table 143 The enumerated parameter of the disturbance recorder function

Timer parameters

Title	Unit	Min	Max	Step	Default
Pre-fault time:					
PreFault	msec	100	1000	1	200
PostFault	msec	100	1000	1	200
MaxFault	msec	500	10000	1	1000
	PreFault PostFault	PreFault msec PostFault msec	PreFault msec 100 PostFault msec 100	PreFaultmsec1001000PostFaultmsec1001000	PreFaultmsec10010001PostFaultmsec10010001

Table 144 The timer parameters of the disturbance recorder function

2.5.4 TRIP contact assignment

The procedures of command processing are shown in the following symbolical figure.

TRC94: Trip Logic function CB1Pol: Circuit Breaker Control function SYN25: Synchrocheck function

Figure 11 Principle of TRIP command processing

The left side of the Figure shows the available sources of the trip commands:

- The function blocks, configured in the device,
- The communication channels to the SCADA system,
- Commands generated using the front panel LCD of the device,
- Any other binary signals, e.g. signals from the binary inputs of the device.

The right side of the Figure shows one of the TRIP relays symbolically. The Figure provides a survey of the configured trip command processing methods. In the middle of the Figure, the locations indicated by "User" shows the possibilities for the user to modify the procedures. All other parts are factory programmed. The detailed description of the TRIP command processing can be found on the website in the following document: "**Application of high – speed TRIP contacts**".

The outputs of the "Simplified trip logic function" are connected directly to the contacts of the trip module (PSTP+/2101 module in position "A").

Binary status signal	Title	Connected to the contact PSTP+/2101 module in position "A"
TRC94_GenTr_Grl_	General Trip	Trip

Table 145 The connected signals of the phase-selective trip logic function

To the inputs of the "phase-selective trip logic function" some signals are assigned during factory configuration, some signals however depend on the programming by the user. The conditions are defined by the user applying the graphic equation editor. The factory defined inputs and the user defined inputs are in "OR" relationship.

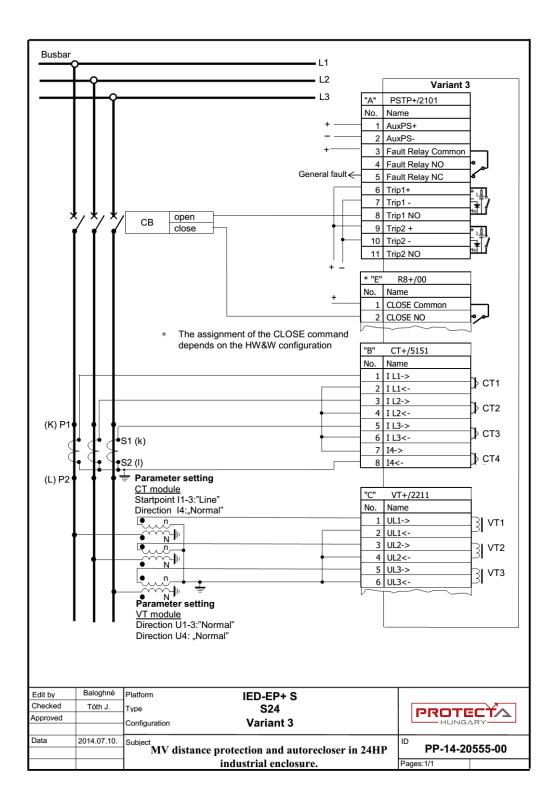
Input	Binary status signal	Explanation
	IOC50_GenTr_Grl_ OR	Trip command of the instantaneous overcurrent protection function
	IOC50N_GenTr_Grl_ OR	OR Trip command of the residual instantaneous overcurrent protection function
3Ph Trip	DIS21_SOTFTr_Grl_ OR	OR Trip command of the switch onto fault logic OR
	DIS21_Z1Tr_Grl_ OR	First zone trip command of the distance protection function OR
	DIS21_Z2Tr_Grl_	Second zone trip command of the distance protection function
Block	n.a.	Blocking the outputs of the phase-selective trip logic function

Table 146 The factory defined binary input signals of the trip logic function

The user defined signals are listed in Table 147.

Input	Binary status signal	Explanation
3ph Trip	TRC94GrO_	Request for three-phase trip command
Block	TRC94_Blk_GrO_	Blocking the outputs of the phase-selective trip logic function

Table 147 The user defined binary input signals of the trip logic function


2.6 LED assignment

On the front panel of the device there are "User LED"-s with the "Changeable LED description label" (See the document "*Quick start guide to the devices of the EuroProt+ product line*"). Some LED-s are factory assigned, some are free to be defined by the user.

LED	Explanation
General Trip	Trip command generated by the trip logic function
Z1 Trip	Distance protection zone 1 trip
Z2 Trip	Distance protection zone 2 trip
Z3 Trip	Distance protection zone 3 trip
Z4 Trip	Distance protection zone 4 trip
Z5 Trip	Distance protection zone 5 trip
Dis Start	Start signal of the Distance protection function
AR Blocked	Blocked state of the automatic reclosing function
OC Trip	Trip command generated by the phase OC protection functions
Res OC Trip	Trip command generated by the residual OC protection functions
Voltage Trip	Trip command generated by the voltage-related functions
Frequ Trip	Trip command generated by the frequency-related functions
LED3113	Free LED, it can be configured by the costumer
LED3114	Free LED, it can be configured by the costumer
LED3115	Free LED, it can be configured by the costumer
AutoReclose	Close command of auto-reclosing function

Table 148 LED assignment

3 External connection

4 Hardware specification

4.1 System design

The EuroProt+S24 protection device line is a scalable hardware platform to adapt to different applications. Data exchange is performed via a 16-bit high-speed digital non-multiplexed parallel bus with the help of a backplane module. Each module is identified by its location and there is no difference between module slots in terms of functionality. The only restriction is the position of the CPU module because it is limited to the "CPU" position. The built-in self-supervisory function minimizes the risk of device malfunctions.

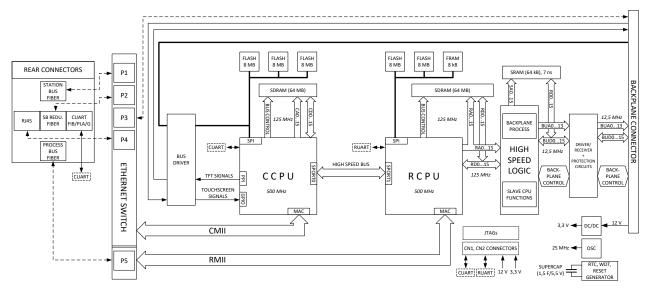


Figure 1 CPU block diagram

4.2 CPU module

4.2.1 CPU+ module

The CPU module contains all the protection, control and communication functions of the EuroProt+S24 device. Dual 500 MHz high-performance Analog Devices Blackfin processors separate relay functions (RDSP) from communication and HMI functions (CDSP). Reliable communication between processors is performed via high-speed synchronous serial internal bus (SPORT).

Each processor has its own operative memory such as SDRAM and flash memories for configuration, parameter and firmware storage. CDSP's operating system (uClinux) utilizes a robust JFFS flash file system, which enables fail-safe operation and the storage of disturbance record files, configuration and parameters.

4.2.2 Module handling

The RDSP core runs at 500 MHz and its external bus speed is 125 MHz. The backplane data speed is limited to approx. 20 MHz, which is more than enough for module data throughput. An additional logic element (CPLD and SRAM) is used as a bridge between the RDSP and the backplane. The CPLD collects analogue samples from CT/VT modules and also controls signaling outputs and inputs.

4.2.3 Fast startup

After power-up the RDSP processor starts up with the previously saved configuration and parameters. Generally, the power-up procedure for the RDSP and relay functions takes only a few seconds. That is to say, it is ready to trip within this time. CDSP's start-up procedure is longer because its operating system needs time to build its file system, initializing user applications such as HMI functions and the IEC61850 software stack.

4.2.4 HMI and communication tasks

- Embedded WEB-server:
 - Remote or local firmware upgrade possibility
 - Modification of user parameters
 - Events list and disturbance records
 - Password management
 - Online data measurement
 - Commands
 - Administrative tasks
- Front panel
 - TFT display handling: the interactive menu set is available through the TFT and the touchscreen interface
 - Black and white 128x64 pixels display with 4 tactile switches
- User keys:
 - tactile switches in B&W display configuration

The built-in 5-port Ethernet switch allows EuroProt+S24 to connect to IP/Ethernet-based networks. The following Ethernet ports are available:

- Station bus (100Base-FX Ethernet) SBW
- Redundant station bus (100Base-FX Ethernet) SBR
- Proprietary Process bus (100Base-FX Ethernet)
- o RJ-45 Ethernet user interface
- Optional 10/100Base-T port via RJ-45 connector

Other communication:

- RS422/RS485 interfaces (galvanic interface to support legacy or other serial protocols, ASIF)
- Plastic or glass fiber interfaces to support legacy protocols, ASIF

4.3 Human-Machine Interface (HMI) module

The EuroProt+S24 device HMI consists of the following two main parts:

- HMI module, which is the front panel of the device,
- HMI functionality is the embedded web server and the intuitive menu system that is accessible through the HMI module. The web server is accessible via station bus or via RJ-45 Ethernet connector.

Module type	Display	User keys	Service port	Rack size	Illustration
HMI+2504	128 x 64 pixels, black and white	4 x tactile	RJ45 10/100Mbit/s	24 HP	
Optional HMI+2404	3,5" TFT	4 x tactile	RJ45 10/100Mbit/s	24 HP	

Main features of the HMI module

Function	Description
16 pieces user LEDs	Three-color, 3 mm circular LEDs
COM LED	Yellow, 3 mm circular LED indicating RJ-45 (on the front panel) communication link and activity
Device LED	1 piece three-color, 3 mm circular LED Green: normal device operation Yellow: device is in warning state Red: device is in error state
Tactile keys	Four tactile mechanical keys (On, Off, Page, LED acknowledgement)
Buzzer	Audible touch key pressure feedback
LED description	User changeable
3.5" or 128x64 pixels display	 128 * 64 pixel B&W display 320 × 240 pixel TFT display with resistive touchscreen interface (optional)
Ethernet service port	IP56 rated Ethernet 10/100-Base-T interface with RJ-45 type connector

4.4 Detailed modules description

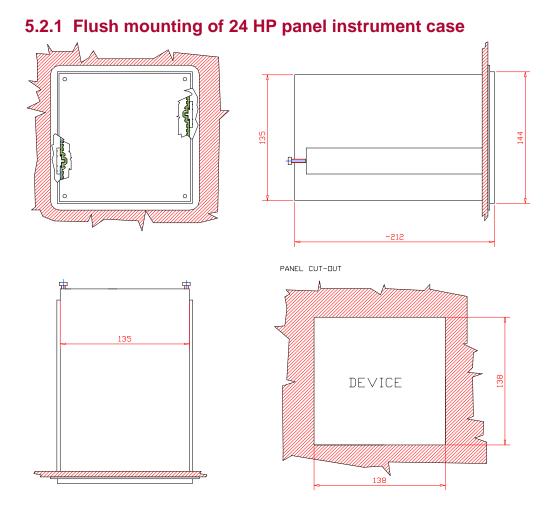
Regarding the other hardware modules detailed descriptions please find it in EP+ Hardware description V1.36 (<u>http://www.protecta.hu/epp-english/HW_guide/hw_description_V1.36.pdf</u>)

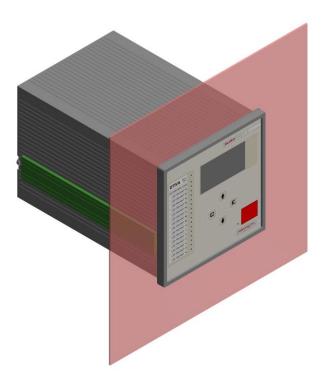
Chapter	Module name	Page
5	Current input module	22
6	Voltage input module	24
7	Binary input module (O12+xxxx)	26
8	Signaling module (R8+xxxx)	29
13.1	PSTP+ modules	41
13.2	O6R5+ modules	43

5 General data

0

- Storage temperature: -40 °C ... +70 °C
- Operation temperature: -20 °C ... +55 °C
- Humidity: 10 % 93 %
- EMC/ESD standard conformance:
 - Electrostatic discharge (ESD) EN 61000-4-2, IEC 60255-22-2, Class 3
 - Electrical fast transients (EFT/B) EN 61000-4-4, IEC 60255-22-4, Class A
 - Surges EN 61000-4-5, IEC 60255-22-5
 - Test voltages: line to earth 4 kV, line to line 1 kV
 - Conducted radio-frequency common mode EN 61000-4-6, IEC 60255-22-6, Level 3
 - o 1 MHz damped oscillatory waves IEC 60255-22-1
 - Test voltage: 2.5 kV (for common and differential mode alike)
 - Voltage interruptions IEC 60255-11
 - Duration: 5 s, Criterion for acceptance: C
 - Voltage dips and short interruptions EN 61000-4-11
 - Voltage during dips: 0%, 40%, 70%
 - Power frequency magnetic field EN 61000-4-8, Level 4
 - Power frequency IEC 60255-22-7, Class A
 - Impulse voltage withstand test EN 60255-5, Class III
 - Dielectric test EN 60255-5, Class III
 - Insulation resistance test EN 60255-5
 - \circ Insulation resistance > 15 G Ω
- Radiofrequency interference test (RFI):
 - Radiated disturbance EN 55011, IEC 60255-25
 - \circ Conducted disturbance at mains ports EN 55011, IEC 60255-255
 - Immunity tests according to the test specifications IEC 60255-26 (2004), EN 50263 (1999), EN 61000-6-2 (2001) and IEC TS 61000-6-5 (2001)
 - Radiated radio-frequency electromagnetic field EN 61000-4-3, IEC 60255-22-3
- Vibration, shock, bump and seismic tests on measuring relays and protection equipment:
 - Vibration tests (sinusoidal), Class I, IEC 60255-21-1
 - Shock and bump tests, Class I, IEC 60255-21-2
 - o Seismic tests, Class I, IEC 60255-21-3

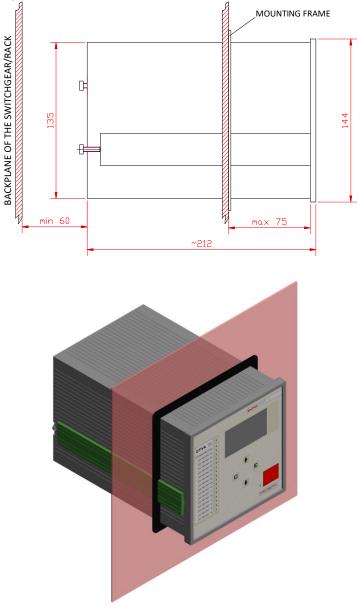

5.1 Mechanical data


- Construction: anodized aluminum surface in tube
- EMC case protects against electromagnetic environmental influences and protects the environment from radiation from the interior
- IP20 protection from rear side (optional IP3X available)
- Size:
 - o 24 HP, panel instrument case
 - Weight: max. 3 kg

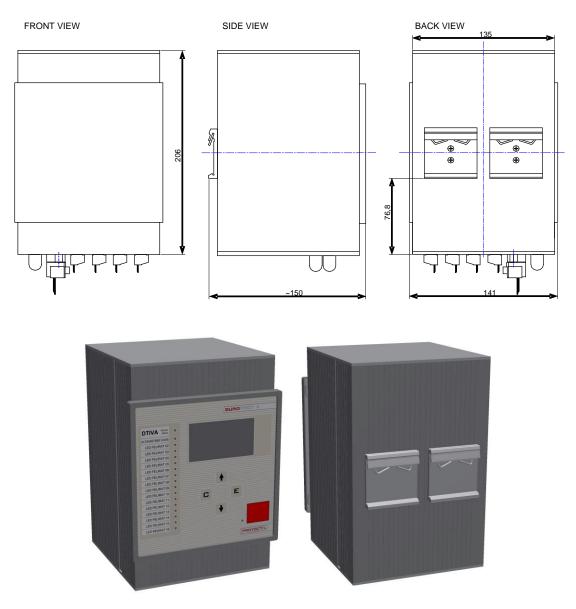
5.2 Mounting methods of IED EP+S24

Mounting methods:

- Flush mounting panel instrument case with IP54 (front side), see 5-1. Figure
- Semi-flush mounting panel instrument case with IP54 (front side), see 5-1. Figure
- Din rail mounting with IP40 (front side), see 5-3. Figure



5-1. Figure S24 flush mounting method


5.2.2 Semi-flush mounting of 24 HP panel instrument case

The dimensions of the panel cut-out for this type of mounting method are the same as in case of flush mounting (138 mm \times 138 mm). For semi flush mounting you only have to cut in two the fixing elements (with green colour in the 3D illustration below) and make the assembly as you can see in the pictures below.

5-2. Figure S24 semi-flush mounting method (max. depth=75mm)

5.2.3 Din rail mounting of 24 HP panel instrument case

5-3. Figure S24 Din rail mounting

5.3 Communication

If the EuroProt+ IED needs to be connected to legacy communication networks, the available options are

- Serial protocols (IEC 60870-5-101/103, Modbus RTU, DNP3, ABB-SPA)
- Network protocols (IEC 60870-5-104, DNP3, Modbus-TCP)
- Legacy network based protocols via 100Base-FX and 10/100Base-TX (RJ45)

Serial interfaces:

- optical (glass/fiber)
- RS485/RS422

All devices of the EuroProt+ IED product range act on an Ethernet network as servers, exchanging with connected clients all information needed for continuous supervision of the entire power network

- Local or remote access to the device by widely used browsers (e.g. Internet Explorer, Mozilla Firefox, Opera, Google Chrome, PDAs, smart phones)
- Front panel image and system characteristics
- Parameter setting
- On-line information
- Event log
- Disturbance record download and fast view
- Command screen
- Scanning the connected devices
- Download of device documentation
- Advanced functions such as diagnostic information, password manager, update manager, device test

Application of the IEC61850 based communication assures interoperability of the Protecta EuroProt+ IEDs with devices made by other manufacturers

- Native and configurable IEC61850 support for both vertical and horizontal communication
- Full range of devices both for high voltage and medium voltage protection tasks with IEC61850 compatibility

The time synchronization methods offered support easy matching in existing SCADA systems

- Primary and secondary NTP server
- Legacy protocol master
- Minute pulse