

E6-TR configuration description (Type: DTRV)

Preliminary version Budapest, October 2011

User's manual version information

Version	Date	Modification	Compiled by
	17. 10. 2011		Petri

CONTENTS

1	Configura	tion description	4
	1.1 Applic	cation	4
	1.1.1 F	Protection functions	4
		Measurement functions	
		lardware configuration	
		The applied hardware modules	
		ng the device	
	1.2 Meeti	ng trie device	0
	1.3 Softw	are configuration	9
	1.3.1 F	Protection functions	9
	1.3.1.1	Three-phase instantaneous overcurrent protection function (IOC50)	10
	1.3.1.2	Three-phase time overcurrent protection function (TOC51)	11
	1.3.1.3	Residual instantaneous overcurrent protection function (IOC50N)	14
	1.3.1.4	Residual overcurrent protection function (TOC51N)	15
	1.3.1.5	Residual directional overcurrent protection function (TOC67N)	18
	1.3.1.6	Negative sequence overcurrent protection function (TOC46)	21
	1.3.1.7	Line thermal protection function (TTR49L)	24
	1.3.1.8	Transformer differential protection function (DIF87_3w)	27
	1.3.1.9	Rectricted earth fault protection function (DIF87N)	30
	1.3.1.10	Definite time overvoltage protection function (TOV59)	
	1.3.1.11	Definite time undervoltage protection function (TUV27)	
	1.3.1.12	Residual definite time overvoltage protection function (TOV59N)	34
	1.3.1.13	Over-frequency protection function (TOF81)	
	1.3.1.14	Underfrequency protection function (TUF81)	
	1.3.1.15	Rate of change of frequency protection function (FRC81)	37
	1.3.1.16	Overexcitation protection function (VPH24)	39
	1.3.1.17	Current unbalance function (VCB60)	43
	1.3.1.18	Breaker failure protection function (BRF50)	45
	1.3.1.19	Trip logic (TRC94)	47
	1.3.1.20	Dead line detection function (DLD)	
	1.3.1.21	Current input function (CT4)	49
	1.3.1.22	Voltage input function (VT4)	52
	1.3.1.23	Automatic tap-changer controller function (ATCC)	55

1 Configuration description

The E6-TR protection device is a member of the *EuroProt+* product line, made by Protecta Co. Ltd. The *EuroProt+* type complex protection in respect of hardware and software is a modular device. The modules are assembled and configured according to the requirements, and then the software determines the functions. This manual describes the specific application of the E6-TR factory configuration.

1.1 Application

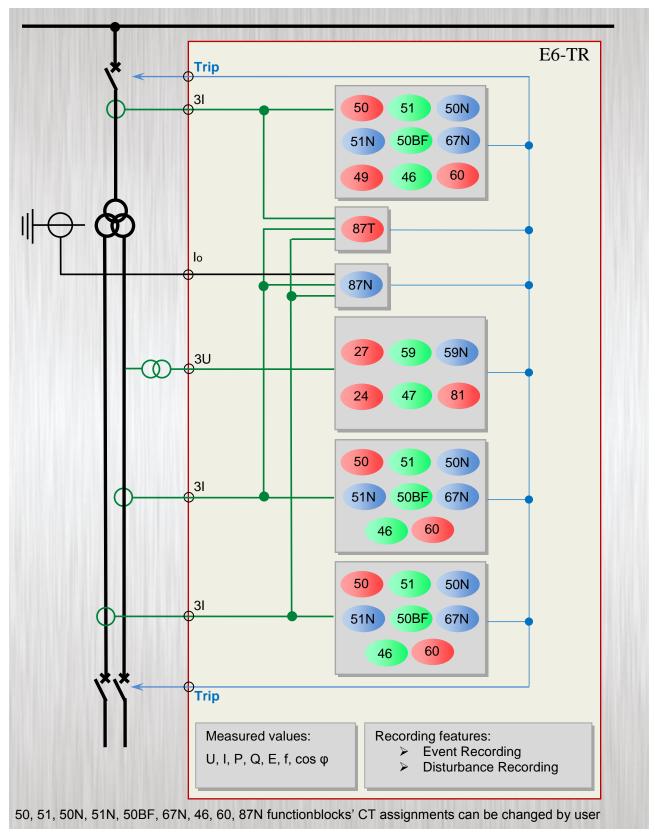
The members of the DTRV product line are configured to protect and control high voltage/medium voltage transformers.

1.1.1 Protection functions

The E6-TR configuration measures three phase currents, the zero sequence current component from all three sides of a three winding, three-phase transformer and additionally three phase voltages and the zero sequence voltage component. These measurements allow, in addition to the current- and voltage-based functions, directionality extension of the residual overcurrent function.

The main protection functions are transformer differential protection and restricted earth-fault protection functions.

Based on the voltage measurement also the frequency is evaluated to realize frequency-based protection functions.


The realized current-based and voltage-based protection functions, including thermal replica protection function, frequency functions and differential functions, are listed in the Table below.

This configuration is extended also with tap-changer controller function.

Protection functions	IEC	ANSI	E6-TR
Three-phase instantaneous overcurrent protection	l>>>	50	X
Three-phase time overcurrent protection	l >, l >>	51	X
Residual instantaneous overcurrent protection	lo >>>	50N	X
Residual time overcurrent protection	lo >, lo >>	51N	X
Residual directional overcurrent protection	Io Dir > >, Io Dir >>	67N	X
Negative sequence overcurrent protection	l ₂ >	46	X
Thermal protection	T >	49	X
Transformer differential	31 _d T >	87T	3w
Restricted earth fault	REF	87N	X
Definite time overvoltage protection	U >, U >>	59	X
Definite time undervoltage protection	U <, U <<	27	X
Residual overvoltage protection	Uo >, Uo >>	59N	X
Negative sequence overvoltage protection	U_2 >	47	X
Overfrequency protection	f >, f >>	810	X
Underfrequency protection	f <, f <<	81U	X
Rate of change of frequency protection	df/dt	81R	X
Overexcitation	V/Hz	24	X
Current unbalance protection		60	X
Breaker failure protection	CBFP	50BF	X

Table 1 The protection functions of the E6-TR configuration

The configured functions are drawn symbolically in the Figure below.

1.1.2 Measurement functions

Based on the hardware inputs the measurements listed in Table below are available.

Measurement functions	E6-TR
Current (I1, I2, I3, Io)	Х
Voltage (U1, U2, U3, U12, U23, U31, Uo, Useq) and frequency	X
Supervised trip contacts (TCS)	X

Table 2 The measurement functions of the E6-TR configuration

1.1.3 Hardware configuration

The minimum number of inputs and outputs are listed in the Table below.

Hardware configuration	ANSI	E6-TR
Mounting		84
Panel instrument case		
Current inputs (4th channel can be sensitive)		12
Voltage inputs		4
Digital inputs		12
Digital outputs		8
Fast trip outputs		8
Temperature monitoring (RTDs) *	38 / 49T	Op.

Table 3 The basic hardware configuration of the E6-TR configuration

The basic module arrangement of the E6-TR configuration is shown in Figure 1.

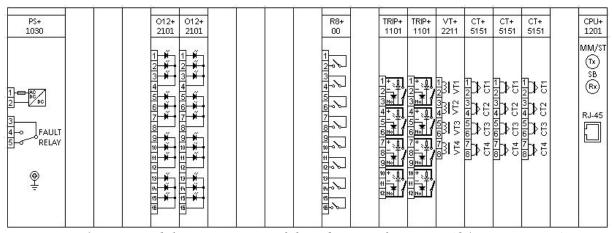


Figure 1 Basic module arrangement of the E6-TR configuration (84TE, rear view)

1.1.4 The applied hardware modules

The applied modules are listed in Table 4.

The technical specification of the device and that of the modules are described in the document "*Hardware description*".

Modulo identifier	Evolonation
Module identifier	Explanation
PS+ 1030	Power supply unit
O12+ 2101	Binary input module
R8+ 00	Signal relay output module
TRIP+ 1101	Trip relay output module
VT+ 2211	Analog voltage input module
CT + 5151	Analog current input module
CPU+ 1201	Processing and communication module

Table 4 The applied modules of the E6-TR configuration

1.2 Meeting the device

The basic information for working with the *EuroProt+* devices are described in the document "*Quick start guide to the devices of the EuroProt+ product line*".

Figure 2 The 84 inch rack of **EuroProt**+ family

Figure 3 The 42 inch rack of EuroProt+ family

Figure 4 The double 42 inch rack of **EuroProt**+ family

1.3 Software configuration

1.3.1 Protection functions

The implemented protection functions are listed in $Table\ 5$. The function blocks are described in details in separate documents. These are referred to also in this table.

Name	Title	Document
IOC50	3ph Instant.OC	Three-phase instantaneous overcurrent protection function block description
TOC51_low TOC51_high	3ph Overcurr	Three-phase overcurrent protection function block description
IOC50N	Residual Instant.OC	Residual instantaneous overcurrent protection function block description
TOC51N_low TOC51N_high	Residual TOC	Residual overcurrent protection function block description
TOC67N_low TOC67N_high	Dir.Residual TOC	Directional residual overcurrent protection function block description
TOC46	Neg. Seq. OC	Negative sequence overcurrent protection function block description
TTR49L	Thermal overload	Line thermal protection function block description
DIF87_3w	Transformer Differential	Transformer differential protection function block description
DIF87N	Restricted EF	Restricted Earth Fault protection function block description
TOV59_high TOV59_low	Overvoltage	Definite time overvoltage protection function block description
TUV27_high TUV27_low	Undervoltage	Definite time undervoltage protection function block description
TOV59N_high TOV59N_low	Overvoltage	Definite time zero sequence overvoltage protection function block description
TOF81_high TOF81_low	Overfrequency	Overfrequency protection function block description
TUF81_high TUF81_low	Underfrequency	Underfrequency protection function block description
FRC81_high FRC81_low	ROC of frequency	Rate of change of frequency protection function block description
VPH24	Overexcitation	Overexcitation protection function block description
VCB60	Current Unbalance	Current unbalance function block description
BRF50	Breaker failure	Breaker failure protection function block description
TRC94	Trip Logic	Trip logic function block description
DLD	Dead line detection	Dead line detection protection function block description
CT4		Current input function block description
VT4		Voltage input function block description
ATCC	Tap Change Control	Automatic tap-changer controller function block description

Table 5 Implemented protection functions

1.3.1.1 Three-phase instantaneous overcurrent protection function (IOC50)

The three-phase instantaneous overcurrent protection function (IOC50) operates immediately if the phase currents are higher than the setting value.

The setting value is a parameter, and it can be doubled by graphic programming of the dedicated input binary signal defined by the user.

The function is based on peak value selection or on the RMS values of the Fourier basic harmonic calculation, according to the parameter setting. The fundamental Fourier components are results of an external function block.

Parameter for type selection has selection range of Off, Peak value and Fundamental value. When Fourier calculation is selected then the accuracy of the operation is high, the operation time however is above one period of the network frequency. If the operation is based on peak values then fast sub-cycle operation can be expected, but the transient overreach can be high.

The function generates trip commands without additional time delay if the detected values are above the current setting value.

The function generates trip commands for the three phases individually and a general trip command as well.

The instantaneous overcurrent protection function has a binary input signal, which serves the purpose of disabling the function. The conditions of disabling are defined by the user, applying the graphic equation editor.

Technical data

Teermedi data					
Function		Accuracy			
Using peak value calculation					
Operating characteristic	Instantaneous	<6%			
Reset ratio	0.85				
Operate time at 2*I _S	<15 ms				
Reset time *	< 40 ms				
Transient overreach	90 %				
Using Fourier basic harmonic calculation					
Operating characteristic	Instantaneous	<2%			
Reset ratio	0.85				
Operate time at 2* I _S	<25 ms				
Reset time *	< 60 ms				
Transient overreach	15 %				

^{*}Measured with signal contacts

Table 6 Technical data of of the instantaneous overcurrent protection function

Parameters

Enumerated parameter

Parameter name	Title	Selection range	Default		
Parameter for type selection					
IOC50_Oper_EPar_ Operation Off, Peak value, Fundamental value Peak value					

Table 7 The enumerated parameter of the instantaneous overcurrent protection function

Integer parameter

Parameter name	Title	Unit	Min	Max	Step	Default
Starting current parameter:						
IOC50_StCurr_IPar_	Start Current	%	20	3000	1	200

Table 8 The integer parameter of the instantaneous overcurrent protection function

1.3.1.2 Three-phase time overcurrent protection function (TOC51)

The overcurrent protection function realizes definite time or inverse time characteristics according to IEC or IEEE standards, based on three phase currents. The characteristics are harmonized with IEC 60255-151, Edition 1.0, 2009-08. This function can be applied as main protection for medium-voltage applications or backup or overload protection for high-voltage network elements.

The definite (independent) time characteristic has a fixed time delay when the current is above the starting current I_s previously set as a parameter.

The standard operating characteristics of the inverse time overcurrent protection function are defined by the following formula:

$$t(G) = TMS \left[\frac{k}{\left(\frac{G}{G_S}\right)^{\alpha} - 1} + c \right] \text{ when } G > G_S$$

where

t(G)(seconds) theoretical operate time with constant value of G,

k, c constants characterizing the selected curve (in seconds), constants characterizing the selected curve (no dimension),

G measured value of the characteristic quantity, Fourier base harmonic

of the phase currents (IL1Four, IL2Four, IL3Four),

G_S preset value of the characteristic quantity (Start current),

TMS preset time multiplier (no dimension).

	IEC ref	Title	k _r	С	α
1	Α	IEC Inv	0,14	0	0,02
2	В	IEC VeryInv	13,5	0	1
3	С	IEC ExtInv	80	0	2
4		IEC LongInv	120	0	1
5		ANSI Inv	0,0086	0,0185	0,02
6	D	ANSI ModInv	0,0515	0,1140	0,02
7	Е	ANSI Verylnv	19,61	0,491	2
8	F	ANSI ExtInv	28,2	0,1217	2
9		ANSI LongInv	0,086	0,185	0,02
10		ANSI LongVeryInv	28,55	0,712	2
11		ANSI LongExtInv	64,07	0,250	2

The end of the effective range of the dependent time characteristics (G_D) is:

$$G_{\rm D} = 20 * G_{\rm S}$$

Above this value the theoretical operating time is definite:

$$t(G) = TMS \left[\frac{k}{\left(\frac{G_D}{G_S}\right)^{\alpha} - 1} + c \right] \text{ when } G > G_D = 20 * G_S$$

Additionally a minimum time delay can be defined by a dedicated parameter. This delay is valid if it is longer than t(G), defined by the formula above.

Resetting characteristics:

- for IEC type characteristics the resetting is after a fix time delay defined by TOC51_Reset_TPar_ (Reset delay),
- for ANSI types however according to the formula below:

$$t_r(G) = TMS \left[\frac{k_r}{1 - \left(\frac{G}{G_S} \right)^{\alpha}} \right] \text{ when } G < G_S$$

where

 $t_r(G)$ (seconds) theoretical reset time with constant value of G,

 $\begin{array}{ll} k_r & \text{constants characterizing the selected curve (in seconds),} \\ \alpha & \text{constants characterizing the selected curve (no dimension),} \end{array}$

G measured value of the characteristic quantity, Fourier base harmonic

of the phase currents,

G_S preset value of the characteristic quantity (Start current),

TMS preset time multiplier (no dimension).

	IEC ref	Title	k _r	α
1	Α	IEC Inv	Resetting after fix ti	me delay,
2	В	IEC VeryInv	according to preset	parameter
3	С	IEC ExtInv	TOC51_Reset_TPa	ar_
4		IEC LongInv	"Reset delay"	
5		ANSI Inv	0,46	2
6	D	ANSI Modinv	4,85	2
7	E	ANSI Verylnv	21,6	2
8	F	ANSI ExtInv	29,1	2
9		ANSI LongInv	4,6	2
10		ANSI LongVeryInv	13,46	2
11		ANSI LongExtInv	30	2

The binary output status signals of the three-phase overcurrent protection function are starting signals of the three phases individually, a general starting signal and a general trip command.

The overcurrent protection function has a binary input signal, which serves the purpose of disabling the function. The conditions of disabling are defined by the user, applying the graphic equation editor.

Technical data

Function	Value	Accuracy
Operating accuracy	20 ≤ G _S ≤ 1000	< 2 %
Operate time accuracy		±5% or ±15 ms, whichever is greater
Reset ratio	0,95	
Reset time * Dependent time char. Definite time char.	Approx 60 ms	< 2% or ±35 ms, whichever is greater
Transient overreach		< 2 %
Pickup time *	< 40 ms	
Overshot time Dependent time char. Definite time char.	30 ms 50 ms	
Influence of time varying value of the input current (IEC 60255-151)		< 4 %

^{*} Measured with signal relay contact

Table 9 Technical data of of the instantaneous overcurrent protection function

Parameters

Enumerated parameters

Parameter name	Title	Selection range	Default				
Parameter for type selection							
TOC51_Oper_EPar_	Operation	Off, DefinitTime, IEC Inv, IEC VeryInv, IEC ExtInv, IEC LongInv, ANSI Inv, ANSI ModInv, ANSI VeryInv, ANSI ExtInv, ANSI LongInv, ANSI LongVeryInv, ANSI LongExtInv	Definit Time				

Table 10 The enumerated parameters of the time overcurrent protection function

Integer parameter

Parameter name	Title	Unit	Min	Max	Step	Default	
Starting current parameter:							
TOC51_StCurr_IPar_	Start Current	%	20	1000	1	200	

Table 11 The integer parameter of the time overcurrent protection function

Float point parameter

1 loat point paramotor								
Parameter name	Title	Unit	Min	Max	Step	Default		
Time multiplier of the inverse characteristics (OC module)								
TOC67 Multip FPar	Time Multiplier	sec	0.05	999	0.01	1.0		

Table 12 The float point parameter of the time overcurrent protection function

Parameter name	ne Title		Min	Max	Step	Default
Minimal time delay for the inverse characteristics:						
TOC51_MinDel_TPar_	Min Time Delay *	msec	0	60000	1	100
Definite time delay:						
TOC51_DefDel_TPar_	Definite Time Delay **	msec	0	60000	1	100
Reset time delay for the inverse characteristics:						
TOC51_Reset_TPar_	Reset Time*	msec	0	60000	1	100

^{*}Valid for inverse type characteristics

Table 13 The timer parameters of the time overcurrent protection function

^{**}Valid for definite type characteristics only

1.3.1.3 Residual instantaneous overcurrent protection function (IOC50N)

The residual instantaneous overcurrent protection function (IOC50N) block operates immediately if the residual current (3lo) is above the setting value. The setting value is a parameter, and it can be doubled by a dedicated binary input signal defined by the user applying the graphic programming.

The function is based on peak value selection or on the RMS values of the Fourier basic harmonic component of the residual current, according to the parameter setting. The fundamental Fourier component calculation is not part of the IOC50N function.

Parameter for type selection has selection range of Off, Peak value and Fundamental value.

The function generates a trip commands without additional time delay if the detected values are above the current setting value.

The residual instantaneous overcurrent protection function has a binary input signal, which serves the purpose of disabling the function. The conditions of disabling are defined by the user, applying the graphic equation editor.

Technical data

Function		Accuracy
Using	peak value calculation	-
Operating characteristic (I>0.1 In)	Instantaneous	<6%
Reset ratio	0.85	
Operate time at 2*I _S	<15 ms	
Reset time *	< 35 ms	
Transient overreach	85 %	
Using Fouri	er basic harmonic calcula	tion
Operating characteristic (I>0.1 In)	Instantaneous	<3%
Reset ratio	0.85	
Operate time at 2*I _S	<25 ms	
Reset time *	< 60 ms	
Transient overreach	15 %	

^{*}Measured with signal contacts

Table 14 Technical data of the residual instantaneous overcurrent protection function

Parameters

Enumerated parameter

Parameter name	Title	Selection range	Default			
Parameter for type selection						
IOC50N_Oper_EPar_	Operation	Off, Peak value, Fundamental value	Peak value			

Table 15 The enumerated parameter of the residual instantaneous overcurrent protection function

Integer parameter

Parameter name	Title	Unit	Min	Max	Step	Default	
Starting current parameter:							
IOC50N_StCurr_IPar_	Start Current	%	10	400	1	200	

Table 16 The integer parameter of the residual instantaneous overcurrent protection function

1.3.1.4 Residual overcurrent protection function (TOC51N)

The residual delayed overcurrent protection function can realize definite time or inverse time characteristics according to IEC or IEEE standards, based on the RMS value of the fundamental Fourier component of a single measured current, which can be the measured residual current at the neutral point (3lo) or the calculated zero sequence current component. The characteristics are harmonized with IEC 60255-151, Edition 1.0, 2009-08.

The definite (independent) time characteristic has a fixed time delay when the current is above the starting current I_s previously set as a parameter.

The standard operating characteristics of the inverse time overcurrent protection function are defined by the following formula:

$$t(G) = TMS \left[\frac{k}{\left(\frac{G}{G_S}\right)^{\alpha} - 1} + c \right] \text{ when } G > G_S$$

where

t(G)(seconds) theoretical operate time with constant value of G,

k, c constants characterizing the selected curve (in seconds), α constant characterizing the selected curve (no dimension),

G measured value of the characteristic quantity, Fourier base harmonic

of the residual current (INFour),

 G_S preset value of the characteristic quantity (Start current),

TMS preset time multiplier (no dimension).

	IEC ref		k _r	С	α
1	Α	IEC Inv	0,14	0	0,02
2	В	IEC VeryInv	13,5	0	1
3	С	IEC ExtInv	80	0	2
4		IEC LongInv	120	0	1
5		ANSI Inv	0,0086	0,0185	0,02
6	D	ANSI ModInv	0,0515	0,1140	0,02
7	Е	ANSI VeryInv	19,61	0,491	2
8	F	ANSI ExtInv	28,2	0,1217	2
9		ANSI LongInv	0,086	0,185	0,02
10		ANSI LongVeryInv	28,55	0,712	2
11		ANSI LongExtInv	64,07	0,250	2

The end of the effective range of the dependent time characteristics (G_D) is:

$$G_{\rm D} = 20 * G_{\rm S}$$

Above this value the theoretical operating time is definite:

$$t(G) = TMS \left[\frac{k}{\left(\frac{G_{\rm D}}{G_{\rm S}}\right)^{\alpha} - 1} + c \right] \text{ when } G > G_{\rm D} = 20 * G_{\rm S}$$

Additionally a minimum time delay can be defined by a dedicated parameter (Min. Time Delay). This delay is valid if it is longer than t(G), defined by the formula above.

Resetting characteristics:

- for IEC type characteristics the resetting is after a fix time delay,
- for ANSI types however according to the formula below:

$$t_r(G) = TMS \left[\frac{k_r}{1 - \left(\frac{G}{G_S} \right)^{\alpha}} \right] \text{ when } G < G_S$$

where

 $t_r(G)$ (seconds) theoretical reset time with constant value of G,

 k_r constants characterizing the selected curve (in seconds), α constant characterizing the selected curve (no dimension),

G measured value of the characteristic quantity, Fourier base harmonic

of the residual current,

G_S preset value of the characteristic quantity (Start current),

TMS preset time multiplier (no dimension).

	IEC ref		k _r	α
1	Α	IEC Inv	Resetting after fix	time delay,
2	В	IEC Verylnv	according to prese	
3	С	IEC ExtInv	TOC51_Rese	t_TPar_
4		IEC LongInv	"Reset de	elay"
5		ANSI Inv	0,46	2
6	D	ANSI ModInv	4,85	2
7	Е	ANSI Verylnv	21,6	2
8	F	ANSI ExtInv	29,1	2
9		ANSI LongInv	4,6	2
10		ANSI LongVeryInv	13,46	2
11		ANSI LongExtInv	30	2

The binary output status signals of the residual overcurrent protection function are the general starting signal and the general trip command if the time delay determined by the characteristics expired.

The residual overcurrent protection function has a binary input signal, which serves the purpose of disabling the function. The conditions of disabling are defined by the user, applying the graphic equation editor.

Technical data

Function	Value	Accuracy
Operating accuracy *	20 ≤ G _S ≤ 1000	< 3 %
Operate time accuracy		±5% or ±15 ms, whichever is greater
Reset ratio	0,95	
Reset time * Dependent time char. Definite time char.	Approx 60 ms	< 2% or ±35 ms, whichever is greater
Transient overreach		2 %
Pickup time	≤ 40 ms	
Overshot time		
Dependent time char.	30 ms	
Definite time char.	50 ms	
Influence of time varying value of the input current (IEC 60255-151)		< 4 %

^{*} Measured in version In = 200 mA

Table 17 The technical data of the residual overcurrent protection function

Parameters

Enumerated parameters

Parameter name	Title	Selection range	Default			
Parameter for type selection						
TOC51N_Oper_EPar_	Operation	Off, DefinitTime, IEC Inv, IEC VeryInv, IEC ExtInv, IEC LongInv, ANSI Inv, ANSI ModInv, ANSI VeryInv, ANSI ExtInv, ANSI LongInv, ANSI LongVeryInv, ANSI LongExtInv	Definite Time			

Table 18 The enumerated parameters of the residual overcurrent protection function

Integer parameter

Parameter name	Title	Unit	Min	Max	Step	Default
Starting current parameter:						
TOC51N_StCurr_IPar_	Start Current *	%	5	200	1	50
TOC51N_StCurr_IPar_	Start Current **	%	10	1000	1	50

^{*} ln = 1 A or 5 A

Table 19 The integer parameter of the residual overcurrent protection function

Float point parameter

Parameter name	Title	Unit	Min	Max	Step	Default	
Time multiplier of the inverse characteristics (OC module)							
TOC51N_Multip_FPar_	Time Multiplier	sec	0.05	999	0.01	1.0	

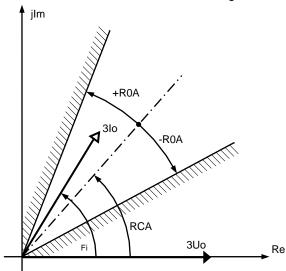
Table 20 The float parameter of the residual overcurrent protection function

Parameter name	Title	Unit	Min	Max	Step	Default	
Minimal time delay for the inverse characteristics:							
TOC51N_MinDel_TPar_	Min Time Delay*	msec	0	60000	1	100	
Definite time delay:							
TOC51N_DefDel_TPar_	Definite Time Delay**	msec	0	60000	1	100	
Reset time delay for the inverse characteristics:							
TOC51N_Reset_TPar_	Reset Time*	msec	0	60000	1	100	

^{*}Valid for inverse type characteristics

Table 21 The timer parameters of the residual overcurrent protection function

^{**} In = 200 mA or 1 A


^{**}Valid for definite type characteristics only

1.3.1.5 Residual directional overcurrent protection function (TOC67N)

The main application area of the directional residual delayed overcurrent protection function is an earth-fault protection.

The inputs of the function are the RMS value of the Fourier basic harmonic components of the zero sequence current (IN=3Io) and those of the zero sequence voltage (UN=3Uo).

The block of the directional decision generates a signal of TRUE value if the UN=3Uo zero

sequence voltage and the IN=3lo zero sequence current are above the limits needed for correct directional decision, and the angle difference between the vectors is within the preset range. The decision enables the output start and trip signal of an overcurrent protection function block (TOC51N). This non-directional residual overcurrent protection function block is described in a separate document.

The directional decision module calculates the phase angle between the residual voltage and the residual current. The reference signal is the residual voltage according to the *Figure*.

The output of the directional decision module is OK, namely it is TRUE if the phase angle between the residual voltage and the residual current is within the limit range defined by the preset parameter OR if non-directional operation is selected by the preset parameter (Direction=NonDir).

Technical data

Function	Value	Accuracy
Operating accuracy		< ±2 %
Operate time accuracy		±5% or ±15 ms, whichever is greater
Accuracy in minimum time range		±35 ms
Reset ratio	0,95	
Reset time	Approx 50 ms	±35 ms
Transient overreach	<2 %	
Pickup time	25 – 30 ms	
Angular accuracy lo ≤ 0.1 ln 0.1 ln < lo ≤ 0.4 ln 0.4 ln < lo		< ±10° < ±5° < ±2°
Angular reset ratio Forward and backward All other selection	10° 5°	

Table 22 The technical data of the residual directional overcurrent protection function

Parameters

Enumerated parameters

Parameter name	Title	Selection range	Default						
Directionality of the function	Directionality of the function								
TOC67N_Dir_EPar_	Direction	NonDir,Forward-Angle,Backward-Angle,Forward-I*cos(fi),Backward-I*cos(fi),Forward-I*sin(fi),Backward-I*sin(fi),Forward-I*sin(fi+45),Backward-I*sin(fi+45)	Forward- Angle						
Operating characteristic se	election of the	TOC51N module							
TOC67N_Oper_EPar_ Operation		Off,DefiniteTime,IEC Inv,IEC VeryInv,IEC ExtInv,IEC LongInv,ANSI Inv,ANSI ModInv,ANSI VeryInv,ANSI ExtInv,ANSI LongInv,ANSI LongVeryInv,ANSI LongExtInv	DefiniteTime						

Table 23 The enumerated parameters of the residual directional overcurrent protection function

Short explanation of the enumerated parameter "Direction"

Selected value	Explanation						
NonDir,	Operation according to non-directional TOC51N						
Forward-Angle	See <i>Figure</i> , set RCA (Characteristic Angle) and ROA (Operating Angle) as required						
Backward-Angle	RCAactual=RCAset+180°, set RCA (Characteristic Angle) and ROA (Operating Angle) as required						
Forward-I*cos(fi)	RCA=0°fix, ROA=85°fix, the setting values RCA and ROA are not applied						
Backward-I*cos(fi)	RCA=180°fix, ROA=85°fix, the setting values RCA and ROA are not applied						
Forward-I*sin(fi)	RCA=90°fix, ROA=85°fix, the setting values RCA and ROA are not applied						
Backward-I*sin(fi)	RCA=-90°fix, ROA=85°fix, the setting values RCA and ROA are not applied						
Forward-I*sin(fi+45)	RCA=45°fix, ROA=85°fix, the setting values RCA and ROA are not applied						
Backward-I*sin(fi+45)	RCA=-135°fix, ROA=85°fix, the setting values RCA and ROA are not applied						

Table 24 The short explanation of the enumerated parameters of the residual directional overcurrent protection function

Integer parameters

Parameter name	Title	Unit	Min	Max	Step	Default		
The threshold value for the 3Uo zero sequence voltage, below which no directionality is possible.								
% of the rated voltage of the voltage transformer input								
TOC67N_UoMin_IPar_	URes Min	%	1	10	1	2		
The threshold value for the	The threshold value for the 3lo zero sequence current, below which no operation is possible.							
% of the rated current of the	% of the rated current of the current transformer input							
TOC67N_loMin_lPar_	IRes Min	%	1	50	1	5		
Operating angle (See Figure	re)							
TOC67N_ROA_IPar_	Operating Angle	deg	30	80	1	60		
Characteristic angle (See Figure)								
TOC67N_RCA_IPar_	Characteristic Angle	deg	-180	180	1	60		
Start current (TOC51N mod	Start current (TOC51N module)							
TOC67N_StCurr_IPar_	Start Current	%	5	200	1	50		

Table 25 The integer parameters of the residual directional overcurrent protection function

Float point parameter

Parameter name	Title	Unit	Min	Step	Step	Default	
Time multiplier of the inverse characteristics (TOC51N module)							
TOC67N_Multip_FPar_	Time Multiplier	sec	0.05	999	0.01	1.0	

Table 26 The float point parameter of the residual directional overcurrent protection function

Parameter name	Title	Unit	Min	Max	Step	Default		
Minimal time delay for the inverse characteristics (TOC 51N module):								
TOC67N_MinDel_TPar_	Min Time Delay	msec	50	60000	1	100		
Definite time delay (TOC 5	Definite time delay (TOC 51N module):							
TOC67N_DefDel_TPar_	Definite Time Delay	msec	0	60000	1	100		
Reset time delay for the inverse characteristics (TOC 51N module):								
TOC67N_Reset_TPar_	Reset Time	msec	0	60000	1	100		

Table 27 The timer parameters of the residual directional overcurrent protection function

1.3.1.6 Negative sequence overcurrent protection function (TOC46)

The negative sequence overcurrent protection function (TOC46) block operates if the negative sequence current is higher than the preset starting value.

In the negative sequence overcurrent protection function, definite-time or inverse-time characteristics are implemented, according to IEC or IEEE standards. The function evaluates a single measured current, which is the RMS value of the fundamental Fourier component of the negative sequence current. The characteristics are harmonized with IEC 60255-151, Edition 1.0, 2009-08.

The definite (independent) time characteristic has a fixed delaying time when the current is above the starting current G_s previously set as a parameter.

The standard dependent time characteristics of the negative sequence overcurrent protection function are as follows.

$$t(G) = TMS \left[\frac{k}{\left(\frac{G}{G_S}\right)^{\alpha} - 1} + c \right] \text{ when } G > G_S$$

where

t(G)(seconds) theoretical operate time with constant value of G.

k, c constants characterizing the selected curve (in seconds), constant characterizing the selected curve (no dimension).

G measured value of the characteristic quantity, Fourier base harmonic

of the negative sequence current (INFour),

G_S preset starting value of the characteristic quantity,

TMS preset time multiplier (no dimension).

	IEC ref		k _r	С	α
1	Α	IEC Inv	0,14	0	0,02
2	В	IEC VeryInv	13,5	0	1
3	С	IEC ExtInv	80	0	2
4		IEC LongInv	120	0	1
5		ANSI Inv	0,0086	0,0185	0,02
6	D	ANSI ModInv	0,0515	0,1140	0,02
7	Е	ANSI Verylnv	19,61	0,491	2
8	F	ANSI ExtInv	28,2	0,1217	2
9		ANSI LongInv	0,086	0,185	0,02
10		ANSI LongVeryInv	28,55	0,712	2
11		ANSI LongExtInv	64,07	0,250	2

Table 28 The constants of the standard dependent time characteristics

A parameter (Operation) serves for choosing overcurrent function of independent time delay or dependent one with type selection above.

Time multiplier of the inverse characteristics (TMS) is also a parameter to be preset.

The end of the effective range of the dependent time characteristics (G_D) is:

$$G_{\rm D} = 20 * G_{\rm S}$$

Above this value the theoretical operating time is definite. The inverse type characteristics are also combined with a minimum time delay, the value of which is set by user parameter TOC46_MinDel_TPar_ (Min. Time Delay).

The negative phase sequence components calculation is based on the Fourier components of the phase currents.

The binary output status signals of the negative sequence overcurrent protection function are the general starting and the general trip command of the function.

The negative sequence overcurrent protection function has a binary input signal, which serves the purpose of disabling the function. The conditions of disabling are defined by the user, applying the graphic equation editor.

Technical data

i ecililicai data	1	, ,
Function	Value	Accuracy
Operating accuracy	10 ≤ G _s [%] ≤ 200	< 2 %
Operate time accuracy		±5% or ±15 ms, whichever is greater
Reset ratio	0,95	
Reset time * Dependent time charact. Definite time charact.	approx. 60 ms	<2 % or ±35 ms, whichever is greater
Transient overreach		< 2 %
Pickup time at 2* G _s	<40 ms	
Overshot time		
Dependent time charact.	25 ms	
Definite time charact.	45 ms	
Influence of time varying value of the input current (IEC 60255-151)		< 4 %

^{*} Measured with signal contacts

Table 29 Technical data of the negative sequence overcurrent protection function

Parameters

Enumerated parameter

Parameter name	Title	Selection range	Default					
Parameter for type selection								
TOC46_Oper_EPar_	Operation	Off, DefinitTime, IEC Inv, IEC VeryInv, IEC ExtInv, IEC LongInv, ANSI Inv, ANSI ModInv, ANSI VeryInv, ANSI ExtInv, ANSI LongInv, ANSI LongVeryInv, ANSI LongExtInv	Definit Time					

Table 30 The enumerated parameter of the negative sequence overcurrent protection function

Integer parameter

miteger purumeter						
Parameter name	Title	Unit	Min	Max	Step	Default
Starting current parameter:						
TOC46_StCurr_IPar_	Start Current	%	5	200	1	50

Table 31 The integer parameter of the negative sequence overcurrent protection function

Parameter name	Title	Unit	Min	Max	Step	Default	
Minimal time delay for the ir	Minimal time delay for the inverse characteristics:						
TOC46_MinDel_TPar_	Min Time Delay*	msec	0	60000	1	100	
Definite time delay:							
TOC46_DefDel_TPar_	Definite Time Delay**	msec	0	60000	1	100	
Reset time delay for the inverse characteristics:							
TOC46_Reset_TPar_	Reset Time*	msec	0	60000	1	100	
Time multiplier for the inverse characteristics:							
TOC46_Multip_TPar_	Time Multiplier*	msec	100	60000	1	100	

^{*}Valid for inverse type characteristics

Table 32 The timer parameter of the negative sequence overcurrent protection function

^{**}Valid for definite type characteristics only

1.3.1.7 Line thermal protection function (TTR49L)

Basically, line thermal protection measures the three sampled phase currents. RMS values are calculated and the temperature calculation is based on the highest RMS value of the phase currents.

The temperature calculation is based on the step-by-step solution of the thermal differential equation. This method yields "overtemperature", meaning the temperature above the ambient temperature. Accordingly, the temperature of the protected object is the sum of the calculated "overtemperature" and the ambient temperature.

If the calculated temperature (calculated "overtemperature"+ambient temperature) is above the threshold values, alarm, trip and restart blocking status signals are generated.

For correct setting, the following values must be measured and set as parameters: rated load current is the continuous current applied for the measurement, rated temperature is the steady state temperature at rated load current, base temperature is the temperature of the environment during the measurement and the time constant is the measured heating/cooling time constant of the exponential temperature function.

When energizing the protection device, the algorithm permits the definition of the starting temperature as the initial value of the calculated temperature. The parameter Startup Term. is the initial temperature above the temperature of the environment as compared to the rated temperature above the temperature of the environment

The ambient temperature can be measured using e.g. a temperature probe generating electric analog signals proportional to the temperature. In the absence of such measurement, the temperature of the environment can be set using the dedicated parameter TTR49L_Amb_IPar_ (Ambient Temperature). The selection between parameter value and direct measurement is made by setting the binary Boolean parameter.

The problem of metal elements (the protected line) exposed to the sun is that they are overheated as compared to the "ambient" temperature even without a heating current; furthermore, they are cooled mostly by the wind and the heat transfer coefficient is highly dependent on the effects of the wind. As the overhead lines are located in different geographical environments along the tens of kilometers of the route, the effects of the sun and the wind cannot be considered in detail. The best approximation is to measure the temperature of a piece of overhead line without current but exposed to the same environmental conditions as the protected line itself.

The application of thermal protection of the overhead line is a better solution than a simple overcurrent-based overload protection because thermal protection "remembers" the preceding load states of the line and the setting of the thermal protection does not need so a high security margin between the permitted current and the permitted continuous thermal current of the line. In a broad range of load states and in a broad range of ambient temperatures this permits the better exploitation of the thermal and consequently current carrying capacity of the line.

The thermal differential equation to be solved is:

$$\frac{d\Theta}{dt} = \frac{1}{T}(\frac{I^2(t)R}{hA} - \Theta)$$
, and the definition of the heat time constant is: $T = \frac{cm}{hA}$

In this differential equation:

I(t) (RMS) heating current, the RMS value usually changes over time;
 R resistance of the line;
 c specific heat capacity of the conductor;
 m mass of the conductor;
 θ rise of the temperature above the temperature of the environment;
 h heat transfer coefficient of the surface of the conductor;
 A area of the surface of the conductor;

time.

The solution of the thermal differential equation for constant current is the temperature as the function of time (the mathematical derivation of this equation is described in a separate document):

$$\Theta(t) = \frac{I^2 R}{hA} \left(1 - e^{-\frac{t}{T}} \right) + \Theta_o e^{-\frac{t}{T}}$$

where

 Θ_o is the starting temperature.

Remember that the calculation of the measurable temperature is as follows:

Temperature(t) = $\Theta(t)$ +Temp_ambient

where

Temp ambient is the ambient temperature.

In a separate document it is proven that some more easily measurable parameters can be introduced instead of the aforementioned ones. Thus, the general form of equation above is:

$$H(t) = \frac{\Theta(t)}{\Theta_n} = \frac{I^2}{I_n^2} \left(1 - e^{-\frac{t}{T}} \right) + \frac{\Theta_o}{\Theta_n} e^{-\frac{t}{T}}$$

where:

H(t) is the "thermal level" of the heated object, this is the temperature as a percentage of the Θ_n reference temperature. (This is a dimensionless quantity but it can also be expressed in a percentage form.)

 Θ_n is the reference temperature above the temperature of the environment, which can be measured in steady state, in case of a continuous I_n reference current.

 ${\sf I}_{\sf n}$ is the reference current (can be considered as the nominal current of the heated object). If it flows continuously, then the reference temperature can be measured in steady state.

 $\frac{\Theta_o}{\Theta_n}$ is a parameter of the starting temperature related to the reference temperature

The *RMS calculations modul* calculate the RMS values of the phase currents individually. The sampling frequency of the calculations is 1 kHz; therefore, theoretically, the frequency components below 500Hz are considered correctly in the RMS values. This module is not part of the thermal overload function; it belongs to the preparatory phase.

The Max selection module selects the maximal value of the three RMS phase currents.

The *Thermal replica module* solves the first order thermal differential equation using a simple step-by-step method and compares the calculated temperature to the values set by parameters. The temperature sensor value proportional to the ambient temperature can be an input (this signal is optional, defined at parameter setting).

The function can be disblaed by parameter, or generates a trip pulse if the calculated temperature exceeds the trip value, or generates a trip signal if the calculated temperature exceeds the trip value given by a parameter but it resets only if the temperature cools below the "Unlock temperature".

The line thermal protection function has two binary input signals. The conditions of the input signal are defined by the user, applying the graphic equation editor. One of the signals can block the line thermal protection function, the other one can reset the accumulated heat and set the temperature to the defined value for the subsequent heating test procedure.

Technical data

Function	Accuracy		
Operate time at I>1.2*Itrip	<3 % or <+ 20 ms		

Table 33 Technical data of the line thermal protection function

Parameters

Enumerated parameter

Parameter name Title Selection range					
Parameter for mode of operation					
TTR49L_Oper_EPar_	Operation	Off, Pulsed, Locked	Pulsed		

Table 34 The enumerated parameter of the line thermal protection function

The meaning of the enumerated values is as follows:

Off the function is switched off; no output status signals are generated;

Pulsed the function generates a trip pulse if the calculated temperature exceeds the

trip value

Locked the function generates a trip signal if the calculated temperature exceeds the

trip value. It resets only if the temperature cools below the "Unlock

temperature".

Integer parameters

Parameter name	Title	Unit	Min	Max	Step	Default
Alarm Temperature						
TTR49L_Alm_IPar_	Alarm Temperature	deg	60	200	1	80
Trip Temperature						
TTR49L_Trip_IPar_	Trip Temperature	deg	60	200	1	100
Rated Temperature						
TTR49L_Max_IPar_	Rated Temperature	deg	60	200	1	100
Base Temperature						
TTR49L_Ref_IPar_	Base Temperature	deg	0	40	1	25
Unlock Temperature						
TTR49L_Unl_IPar_	Unlock Temperature	deg	20	200	1	60
Ambient Temperature						
TTR49L_Amb_IPar_	Ambient Temperature	deg	0	40	1	25
Startup Term.						
TTR49L_Str_IPar	Startup Term	%	0	60	1	0
Rated Load Current						
TTR49L_Inom_IPar_	Rated Load Current	%	20	150	1	100
Time constant						
TTR49L_pT_IPar_	Time Constant	min	1	999	1	10

Table 35 The integer parameters of the line thermal protection function

Boolean parameter

Boolean parameter Signal title S		Selection range	Default		
Parameter for ambient temperature sensor application					
TTR49L_Sens_BPar_	No, Yes	No			

Table 36 The boolean parameter of the line thermal protection function

1.3.1.8 Transformer differential protection function (DIF87_3w)

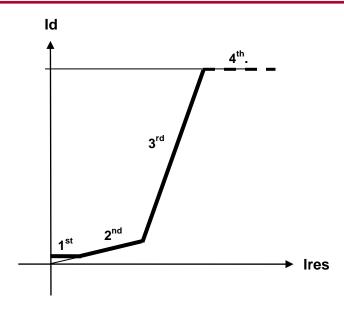
The differential protection function provides main protection for transformers, generators or large motors, but it can also be applied for overhead lines and cables of solidly grounded networks or for the protection of any combination of the aforementioned objects.

Version DIF87_3w can be applied to protect three-winding transformers. The simpler version DIF87_2w does not process analogue inputs from the tertiary side.

The three-phase power transformers transform the primary current to the secondary side according to the turns ratio and the vector group of the transformers. The Y (star), D (delta) or Z (zig-zag) connection of the three phase coils on the primary and secondary sides causes the vector shift of the currents. The numerical differential protection function applies matrix transformation of the directly measured currents of one side of the transformer to match them with the currents of the other side.

In Protecta's transformer differential protection the target of the matrix transformation is the delta (D) side. Thus the problem of zero sequence current elimination in case of an external ground fault is also solved.

The method of the matrix transformation is defined by the "Code" parameter identifying the transformer vector group connection.


The differential current can be high during the transients of transformer energizing (inrush current) due to the current distortion caused by the transformer iron core asymmetrical saturation. In this case, the second harmonic content of the differential current is applied to disable the false operation of the differential protection function.

The differential current can be high in case of the over-excitation of the transformer due to the current distortion caused by the transformer iron core symmetrical saturation. In this case, the fifth harmonic content of the differential current is applied to disable the false operation of the differential protection function.

The harmonic analysis calculates the basic Fourier components of the three differential currents. These results are needed for the high-speed differential current decision and for the second and fifth harmonic restraint calculation.

The software modules evaluate and compare the result with the parameter values set for the second and fifth harmonic. If the harmonic content relative to the basic harmonic component of the differential currents is high, a restraint signal is generated immediately and a timer is started at the same time. If the duration of the active status is at least 25 ms, then the resetting of the restraint signal is delayed by an additional 15 ms.

The decision logic module decides if the differential current of the individual phases is above the characteristic curve of the differential protection function. It compares the magnitudes of the differential currents and those of the restraint currents for evaluation of the "percentage differential characteristics". This curve is the function of the restraint current, which is calculated based on the sum of the magnitude of the phase-shifted phase currents (see Figure below).

The characteristic curve has four sections. The first section is the base sensitivity, the second one serves to compensate the turns ratio deviation e.g. due to the operation of the on-load tap changer, the third is to eliminate false operation caused by the CT saturation and the fourth one is the unrestricted differential function. The slope of the third section is constant, it is 2.

The differential protection function has a binary input signal, which serves the purpose of disabling the function. The conditions of disabling are defined by the user applying the graphic equation editor.

Measured values

Measured value	Dim.	Explanation		
Idiff. L1 In %		The calculated differential current in phase L1 (after vector group		
IUIII. L I	111 /0	compensation)		
ldiff. L2	In %	The calculated differential current in phase L2 (after vector group		
Iuiii. LZ	111 /0	compensation)		
ldiff. L3	In %	The calculated differential current in phase L3 (after vector group		
Iuiii. L3	111 70	compensation)		
Ibias L1	In %	The calculated restraint current in phase L1 (after vector group		
IDIAS LT	111 70	compensation)		
Ibias L2	In %	The calculated restraint current in phase L2 (after vector group		
IDIAS LZ	111 /0	compensation)		
Ibias L3	In %	The calculated restraint current in phase L3 (after vector group		
IDIAS LO	111 /0	compensation)		

Remark: The evaluated basic harmonic values of the measured input phase currents (without vector group compensation) help the commissioning of the differential protection function. These evaluations however are performed by an independent software measuring module, so this chapter excludes the description of these measurements.

Table 37 The measure values of the transformer differential protection function

Enumerated parameters

Parameter name	Title	Selection range	Default		
Parameter to enable the differential protection function:					
DIF87_Op_EPar_	Operation	Off, On			
Parameter to select connection group of the transformer coils in primary-secondary relation:					
DIF87_VGrSec_EPar_	Pri-Sec VGroup*	Dy1,Dy5,Dy7,Dy11,Dd0,Dd6,Dz0,Dz2,Dz4, Dz6,Dz8,Dz10,Yy0,Yy6,Yd1,Yd5,Yd7,Yd11, Yz1,Yz5,Yz7,Yz11	Dd0		
Parameter to select connection group of the transformer coils in primary-tertiary relation:					
DIF87_VGrTer_EPar_	Pri-Ter VGroup*	Dy1,Dy5,Dy7,Dy11,Dd0,Dd6,Dz0,Dz2,Dz4, Dz6,Dz8,Dz10,Yy0,Yy6,Yd1,Yd5,Yd7,Yd11, Yz1,Yz5,Yz7,Yz11	Dd0		

^{*} If the connection of the primary winding in primary-secondary and primary tertiary relation is selected in contradiction then the protection function is automatically disabled, and the function generates a warning signal.

Table 38 The enumerated parameters of the transformer differential protection function

Boolean parameter

Parameter name	Title	Default	Explanation
DIF87_0Seq_BPar_	Zero Seq Elimination	True	

Table 39 The boolean parameter of the transformer differential protection function

Integer parameters

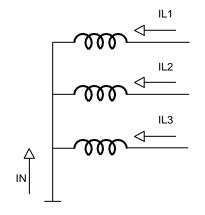

Parameter name	Title	Unit	Min	Max	Step	Default
Parameters for the current magnitude compensation:						
DIF87_TRPr_IPar_	TR Primary Comp	%	20	500	1	100
DIF87_TRSec_IPar_	TR Secondary Comp	%	20	500	1	100
DIF87_TRTer_IPar_	TR Tertiary Comp	%	20	200	1	100
Parameter of the second I	harmonic restraint:					
DIF87_2HRat_IPar_	2nd Harm Ratio	%	5	50	1	15
Parameter of the fifth harmonic restraint:						
DIF87_5HRat_IPar_	5th Harm Ratio	%	5	50	1	25
Parameters of the percent	tage characteristic curve:					
Base sensitivity:						
DIF87_f1_IPar_	Base Sensitivity	%	10	50	1	20
Slope of the second section	on of the characteristics:					
DIF87_f2_IPar_	1st Slope	%	10	50	1	20
Bias limit of the first slope:						
DIF87_f3_IPar_	1st Slope Bias Limit % 200 2000 1 200			200		
Unrestrained differential p	rotection current level:		•	•	•	
DIF87_HCurr_IPar_	UnRst Diff Current	%	800	2500	1	800

Table 40 The integer parameters of the transformer differential protection function

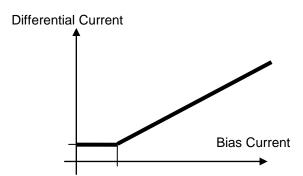
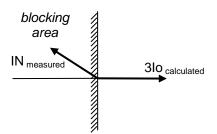

Function	Value	Accuracy	
Operating characteristic	2 breakpoints		
Reset ratio	0,95		
Characteristic accuracy		<2%	
Operate time, unrestrained	Typically 20 ms		
Reset time, unrestrained	Typically 25 ms		
Operate time, restrained	Typically 30 ms		
Reset time, restrained	Typically 25 ms		

Table 41 *The functions of the transformer differential protection function*

1.3.1.9 Rectricted earth fault protection function (DIF87N)

The restricted earth-fault protection function is basically a low-impedance differential protection function based on zero sequence current components. It can be applied to protect one side winding of transformers with grounded neutral against single-phase-to-earth fault (see Figure). The function compares the measured neutral current at the star point (IN) and the calculated zero sequence current component of the phase currents (IL1, IL2, IL3) and generates a trip command if the difference of these currents is above the characteristics.



The function performs the necessary calculations for the evaluation of the "percentage differential characteristics", and decides to trip if the differential current is above the characteristic curve of the zero sequence differential protection function. This curve is the function of the restraint (Bias) current, which is the maximum of the phase currents and the current of the neutral point.

Differential Current = IL1Four + IL2Four + IL3Four + INFour Bias Current = MAX(IL1Four, IL2Four, IL3Four, INFour)

Note: Four = Fourier

Additionally the function compares the direction of the neutral current and that of the calculated zero sequence current. In case of small zero sequence component of the high fault currents in the phases, this decision improves the stability of the function.

In this system, if the angle between the calculated zero sequence current 3lo and the measured neutral current IN is out of the range of ± 90 degrees, then the restricted earth fault protection can be blocked (see the Figure). For the directional decision, the positive directions are drawn in Figure above. The output signal of the directional decision module can block the restricted earth-fault protection function.

A Boolean parameter of the restricted earth-fault protection function serves to enable the directional checking of the measured and calculated zero sequence currents.

The restricted earth-fault protection function generates a trip signal if the differential current as the function of the bias current is above the differential characteristic lines and the function is not blocked by the directional decision. Additionally the operation of the function is enabled by parameter setting. The conditions of enabling are defined by the user applying the graphic equation editor.

Technical data

Function	Value	Accuracy
Operating characteristic	1 breakpoint	
Reset ratio	0,95	
Characteristic accuracy		<2%
Operate time, restrained	typically 20 ms	
Reset time, restrained	typically 25 ms	

Table 42 The technical data of the restricted earth fault protection function

Parameters

Enumerated parameter

Parameter name	Title	Selection range			
Parameter to enable the zero sequence differential protection function:					
DIF87N_Oper_EPar_	Operation	Off, On	On		

Table 43 The enumerated parameter of the restricted earth fault protection function

Boolean parameter

Parameter name	Title	Default	Explanation
DIF87N_DirCheck_BPar_	Directional check	True	Enabling the directional checking of the measured and calculated zero sequence currents

Table 44 The boolean parameter of the restricted earth fault protection function

Integer parameters

Parameter name	Title	Unit	Min	Max	Step	Default
			IVIIII	IVIAX	Step	Delault
Parameters for the current magnitude compensation:						
DIF87N_TRPri_IPar_	lo Primary Match	%	20	500	1	100
DIF87N_TRNeut_IPar_	Neutral Match	%	100	1000	1	500
Base sensitivity:						
DIF87N_f1_IPar_	Base Sensitivity	%	10	50	1	30
Slope of the second section of the characteristics:						
DIF87N_f2_IPar_	Slope	%	50	100	1	70
Break point of the characteristic line:						
DIF87N_f2Brk_IPar_	Base Sens Bias Limit	%	100	200	1	125

Table 45 The integer parameters of the restricted earth fault protection function

1.3.1.10 Definite time overvoltage protection function (TOV59)

The definite time overvoltage protection function measures three voltages. The measured values of the characteristic quantity are the RMS values of the basic Fourier components of the phase voltages.

The Fourier calculation inputs are the sampled values of the three phase voltages (UL1, UL2, UL3), and the outputs are the basic Fourier components of the analyzed voltages (UL1Four, UL2Four, UL3Four). They are not part of the TOV59 function; they belong to the preparatory phase.

The function generates start signals for the phases individually. The general start signal is generated if the voltage in any of the three measured voltages is above the level defined by parameter setting value.

The function generates a trip command only if the definite time delay has expired and the parameter selection requires a trip command as well.

The overvoltaget protection function has a binary input signal, which serves the purpose of disabling the function. The conditions of disabling are defined by the user, applying the graphic equation editor.

Technical data

Function	Value	Accuracy
Pick-up starting accuracy		< ± 0,5 %
Blocking voltage		< ± 1,5 %
Reset time		
U < \rightarrow Un	60 ms	
$U < \rightarrow 0$	50 ms	
Operate time accuracy		< ± 20 ms
Minimum operate time	50 ms	

Table 46 Technical data of the definite time overvoltage protection function

Parameters

Enumerated parameter

Parameter name Title Selection range Default					
Enabling or disabling the overvoltage protection function					
TOV59_Oper_EPar_	Operation	Off, On	On		

Table 47 The enumerated parameter of the definite time overvoltage protection function

Integer parameter

Parameter name	Title	Unit	Min	Max	Step	Default
Voltage level setting. If t a start signal.	he measured voltage	is above th	ne setting	value, the f	unction ge	enerates
TOV59_StVol_IPar_	Start Voltage	%	30	130	1	63

Table 48 The integer parameter of the definite time overvoltage protection function

Boolean parameter

Parameter name	Title	Default
Enabling start signal only:		
TOV59_StOnly_BPar_	Start Signal Only	FALSE

Table 49 The boolean parameter of the definite time overvoltage protection function

Parameter name	Title	Unit	Min	Max	Step	Default
Time delay of the overvoltage protection function.						
TOV59_Delay_TPar_	Time Delay	ms	0	60000	1	100

Table 50 The timer parameter of the definite time overvoltage protection function

1.3.1.11 Definite time undervoltage protection function (TUV27)

The definite time undervoltage protection function measures the RMS values of the fundamental Fourier component of three phase voltages.

The Fourier calculation inputs are the sampled values of the three phase voltages (UL1, UL2, UL3), and the outputs are the basic Fourier components of the analyzed voltages (UL1Four, UL2Four, UL3Four). They are not part of the TUV27 function; they belong to the preparatory phase.

The function generates start signals for the phases individually. The general start signal is generated if the voltage is below the preset starting level parameter setting value and above the defined blocking level.

The function generates a trip command only if the definite time delay has expired and the parameter selection requires a trip command as well.

The operation mode can be chosen by the type selection parameter. The function can be disabled, and can be set to "1 out of 3", "2 out of 3", and "All".

The overvoltage protection function has a binary input signal, which serves the purpose of disabling the function. The conditions of disabling are defined by the user, applying the graphic equation editor.

Technical data

Function	Value	Accuracy
Pick-up starting accuracy		< ± 0,5 %
Blocking voltage		< ± 1,5 %
Reset time		
U> → Un	50 ms	
U> → 0	40 ms	
Operate time accuracy		< ± 20 ms
Minimum operate time	50 ms	

Table 51 Technical data of the definite time undervoltage protection function

Parameters

Enumerated parameter

Parameter name	Title	Selection range	Default			
Parameter for type selection						
TUV27_Oper_EPar_	Operation	Off, 1 out of 3, 2 out of 3, All	1 out of 3			

Table 52 The enumerated parameter of the definite time undervoltage protection function

Integer parameters

Parameter name	Title	Unit	Min	Max	Step	Default
Starting voltage level setting						
TUV27_StVol_IPar_	Start Voltage	%	30	130	1	52
Blocking voltage level setting						
TUV27_BlkVol_IPar_	Block Voltage	%	0	20	1	10

Table 53 The integer parameters of the definite time undervoltage protection function

Boolean parameter

Parameter name	Title	Default
Enabling start signal only:		
TUV27_StOnly_BPar_	Start Signal Only	FALSE

Table 54 The boolean parameter of the definite time undervoltage protection function

Parameter name	Title	Unit	Min	Max	Step	Default
Time delay of the undervoltage protection function.						
TUV27_Delay_TPar_	Time Delay	ms	0	60000	1	100

Table 55 The timer parameter of the definite time undervoltage protection function

1.3.1.12 Residual definite time overvoltage protection function (TOV59N)

The residual definite time overvoltage protection function operates according to definite time characteristics, using the RMS values of the fundamental Fourier component of the zero sequence voltage (UN=3Uo).

The Fourier calculation inputs are the sampled values of the residual or neutral voltage (UN=3Uo) and the outputs are the RMS value of the basic Fourier components of those.

The function generates start signal if the residual voltage is above the level defined by parameter setting value.

The function generates a trip command only if the definite time delay has expired and the parameter selection requires a trip command as well.

The residual overvoltage protection function has a binary input signal, which serves the purpose of disabling the function. The conditions of disabling are defined by the user, applying the graphic equation editor.

Technical data

Function	Value	Accuracy
Pick-up starting accuracy	2-8%	< ± 2 %
Fick-up starting accuracy	8 – 60 %	< ± 1.5 %
Reset time		
U> → Un	60 ms	
U> → 0	50 ms	
Operate time	50 ms	< ± 20 ms

Table 56 Technical data of the residual definite time overvoltage protection function

Parameters

Enumerated parameter

Parameter name	Title	Selection range	Default			
Parameter for enabling/disabling:						
TOV59N_Oper_EPar_	Operation	Off, On	On			

Table 57 The enumerated parameter of the residual definite time overvoltage protection function

Integer parameter

Parameter name	Title	Unit	Min	Max	Step	Default
Starting voltage parameter:						
TOV59N_StVol_IPar_	Start Voltage	%	2	60	1	30

Table 58 The integer parameter of the residual definite time overvoltage protection function

Boolean parameter

Doolean parameter		
Parameter name	Title	Default
Enabling start signal only:		
TOV59N_StOnly_BPar_	Start Signal Only	FALSE

Table 59 The boolean parameter of the residual definite time overvoltage protection function

Parameter name	Title	Unit	Min	Max	Step	Default
Definite time delay:						
TOV59N_Delay_TPar_	Time Delay	ms	0	60000	1	100

Table 60 The time parameter of the residual definite time overvoltage protection function

1.3.1.13 Over-frequency protection function (TOF81)

The deviation of the frequency from the rated system frequency indicates unbalance between the generated power and the load demand. If the available generation is large compared to the consumption by the load connected to the power system, then the system frequency is above the rated value. The over-frequency protection function is usually applied to decrease generation to control the system frequency.

Another possible application is the detection of unintended island operation of distributed generation and some consumers. In the island, there is low probability that the power generated is the same as consumption; accordingly, the detection of high frequency can be one of the indication of island operation.

Accurate frequency measurement is also the criterion for the synchro-check and synchroswitch functions.

The accurate frequency measurement is performed by measuring the time period between two rising edges at zero crossing of a voltage signal. For the acceptance of the measured frequency, at least four subsequent identical measurements are needed. Similarly, four invalid measurements are needed to reset the measured frequency to zero. The basic criterion is that the evaluated voltage should be above 30% of the rated voltage value.

The over-frequency protection function generates a start signal if at least five measured frequency values are above the preset level.

Time delay can also be set.

The function can be enabled/disabled by a parameter.

The over-frequency protection function has a binary input signal. The conditions of the input signal are defined by the user, applying the graphic equation editor. The signal can block the under-frequency protection function.

Technical data

Function	Range	Accuracy
Operate range	40 - 70 Hz	30 mHz
Effective range	45 - 55 Hz / 55 - 65 Hz	2 mHz
Operate time		min 140 ms
Time delay	140 – 60000 ms	± 20 ms
Reset ratio		0,99

Table 61 Technical data of the over-frequency protection function

Parameters

Enumerated parameter

= mannerated parameter					
Parameter name Title Selection range		Default			
Selection of the operating mode					
TOF81_Oper_EPar_	Operation	Off,On	On		

Table 62 The enumerated parameter of the over-frequency protection function

Boolean parameter

Parameter name	Title	Default
Enabling start signal only:		
TOF81_StOnly_BPar_	Start Signal Only	FALSE

Table 63 The boolean parameter of the over-frequency protection function

Float point parameter

Parameter name	Title	Unit	Min	Max	Step	Default
Setting value of the comparison						
TOF81_St_FPar_	Start Frequency	Hz	40	60	0.01	51

Table 64 The float point parameter of the over-frequency protection function

Parameter name	Title	Unit	Min	Max	Step	Default
Time delay						
TOF81_Del_TPar_	Time Delay	msec	100	60000	1	200

Table 65 The timer parameter of the over-frequency protection function

1.3.1.14 Underfrequency protection function (TUF81)

The deviation of the frequency from the rated system frequency indicates unbalance between the generated power and the load demand. If the available generation is small compared to the consumption by the load connected to the power system, then the system frequency is below the rated value. The under-frequency protection function is usually applied to increase generation or for load shedding to control the system frequency.

Another possible application is the detection of unintended island operation of distributed generation and some consumers. In the island, there is low probability that the power generated is the same as consumption; accordingly, the detection of low frequency can be one of the indications of island operation.

Accurate frequency measurement is also the criterion for the synchro-check and synchroswitch functions.

The accurate frequency measurement is performed by measuring the time period between two rising edges at zero crossing of a voltage signal. For the acceptance of the measured frequency, at least four subsequent identical measurements are needed. Similarly, four invalid measurements are needed to reset the measured frequency to zero. The basic criterion is that the evaluated voltage should be above 30% of the rated voltage value.

The under-frequency protection function generates a start signal if at least five measured frequency values are below the setting value.

Time delay can also be set.

The function can be enabled/disabled by a parameter.

The under-frequency protection function has a binary input signal. The conditions of the input signal are defined by the user, applying the graphic equation editor. The signal can block the under-frequency protection function.

Technical data

Function	Range	Accuracy
Operate range	40 - 70 Hz	30 mHz
Effective range	45 - 55 Hz / 55 - 65 Hz	2 mHz
Operate time		min 140 ms
Time delay	140 – 60000 ms	± 20 ms
Reset ratio		0,99

Table 66 Technical data of the under-frequency protection function

Parameters

Enumerated parameter

Parameter name	Title	Selection range Default			
Selection of the operating mode					
TUF81_Oper_EPar_	Operation	Off, On	On		

Table 67 The enumerated parameter of the under-frequency protection function

Boolean parameter

Parameter name	Title	Default			
Enabling start signal only:					
TUF81_StOnly_BPar_	Start Signal Only	FALSE			

Table 68 The boolean parameter of the under-frequency protection function

Float point parameter

1 lout point paramotor						
Parameter name	Title	Unit	Min	Max	Digits	Default
Preset value of the comparison						
TUF81 St FPar	Start Frequency	Hz	40	60	0.01	49

Table 69 The float point parameter of the under-frequency protection function

Parameter name	Title	Unit	Min	Max	Step	Default
Time delay						
TUF81_Del_TPar_	Time Delay	ms	100	60000	1	200

Table 70 The timer parameter of the under-frequency protection function

1.3.1.15 Rate of change of frequency protection function (FRC81)

The deviation of the frequency from the rated system frequency indicates unbalance between the generated power and the load demand. If the available generation is large compared to the consumption by the load connected to the power system, then the system frequency is above the rated value, and if it is small, the frequency is below the rated value. If the unbalance is large, then the frequency changes rapidly. The rate of change of frequency protection function is usually applied to reset the balance between generation and consumption to control the system frequency.

Another possible application is the detection of unintended island operation of distributed generation and some consumers. In the island, there is low probability that the power generated is the same as consumption; accordingly, the detection of a high rate of change of frequency can be an indication of island operation.

Accurate frequency measurement is also the criterion for the synchro-switch function.

The source for the rate of change of frequency calculation is an accurate frequency measurement.

In some applications, the frequency is measured based on the weighted sum of the phase voltages.

The accurate frequency measurement is performed by measuring the time period between two rising edges at zero crossing of a voltage signal. For the acceptance of the measured frequency, at least four subsequent identical measurements are needed. Similarly, four invalid measurements are needed to reset the measured frequency to zero. The basic criterion is that the evaluated voltage should be above 30% of the rated voltage value.

The rate of change of frequency protection function generates a start signal if the df/dt value is above the setting value. The rate of change of frequency is calculated as the difference of the frequency at the present sampling and at three periods earlier.

Time delay can also be set.

The function can be enabled/disabled by a parameter.

The rate of change of frequency protection function has a binary input signal. The conditions of the input signal are defined by the user, applying the graphic equation editor. The signal can block the rate of change of frequency protection function.

Technical data

Function Effective range A		Accuracy
Operating range	-50.05 and +0.05 - +5 Hz/sec	
Pick-up accuracy		±20 mHz/sec
Operate time	min 140 ms	
Time delay	140 – 60000 ms	<u>+</u> 20 ms

Table 71 Technical data of the rate of change of frequency protection function

Parameters

Enumerated parameter

Parameter name	Title Selection range Default		Default	
Selection of the operating mode				
FRC81_Oper_EPar_	Operation	Off,On	On	

Table 72 The enumerated parameter of the rate of change of frequency protection function

Boolean parameter

Parameter name	Title	Default
Enabling start signal only:		
FRC81_StOnly_BPar_	Start Signal Only	True

Table 73 The boolean parameter of the rate of change of frequency protection function

Float point parameter

Parameter name	Title	Unit	Min	Max	Step	Default
Setting value of the comparison						
FRC81_St_FPar_	Start df/dt	Hz/sec	-5	5	0.01	0.5

Table 74 The float point parameter of the rate of change of frequency protection function

Timer parameters

Parameter name	Title	Unit	Min	Max	Step	Default
Time delay						
FRC81_Del_TPar_	Time Delay	msec	100	60000	1	200

Table 75 The timer parameter of the rate of change of frequency protection function

1.3.1.16 Overexcitation protection function (VPH24)

The overexcitation protection function is applied to protect generators and unit transformers against high flux values causing saturation of the iron cores and consequently high magnetizing currents.

The flux is the integrated value of the voltage:

$$\Phi(t) = \Phi_0 + \int_0^t u(t)dt$$

In steady state, this integral can be high if the area under the sinusoidal voltage-time function is large. Mathematically this means that in steady state the flux, as the integral of the sinusoidal voltage function, can be expressed as

$$\Phi(t) = k \frac{U}{f} \cos \omega t$$

The peak value of the flux increases if the magnitude of the voltage increases, and/or the flux can be high if the duration of a period increases; this means that the frequency of the voltage decreases. That is, the flux is proportional to the peak value of the voltage (or to the RMS value) and inversely proportional to the frequency.

The overexcitation protection function is intended to be applied near the generator, where the voltage is expected to be pure sinusoidal, without any distortion. Therefore, a continuous integration of the voltage and a simple peak detection algorithm can be applied.

The effect of high flux values is the symmetrical saturation of the iron core of the generator or that of the unit transformer. During saturation, the magnetizing current is high and distorted; high current peaks can be detected. The odd harmonic components of the current are of high magnitude and the RMS value of the current also increases. The high peak current values generate high dynamic forces, the high RMS value causes overheating. During saturation, the flux leaves the iron core and high eddy currents are generated in the metallic part of the generator or transformer in which normally no current flows, and which is not designed to withstand overheating.

The frequency can deviate from the rated network frequency during start-up of the generator or at an unwanted disconnection of the load. In this case the generator is not connected to the network and the frequency is not kept at a "constant" value. If the generator is excited in this state and the frequency is below the rated value, then the flux may increase above the tolerated value. Similar problems may occur in distributed generating stations in case of island operation.

The overexcitation protection is designed to prevent this long-term overexcited state.

The flux is calculated continuously as the integral of the voltage. In case of the supposed sinusoidal voltage, the shape of the integrated flux will be sinusoidal too, the frequency of which is identical with that of the voltage. The magnitude of the flux can be found by searching for the maximum and the minimum values of the sinusoid.

The magnitude can be calculated if at least one positive and one negative peak value have been found, and the function starts if the calculated flux magnitude is above the setting value. Accordingly, the starting delay of the function depends on the frequency: if the frequency is low, more time is needed to reach the opposite peak value. In case of energizing, the time to find the first peak depends on the starting phase angle of the sinusoidal flux. If the voltage is increased continuously by increasing the excitation of the generator, this time delay cannot be measured.

As the heating effect of the distorted current is not directly proportional to the flux value, the applied characteristic is of inverse type (so called IEEE type): If the overexcitation increases, the operating time decreases. To meet the requirements of application, a definite-time characteristic is also offered in this protection function as an alternative.

The supervised quantity is the calculated U/f value as a percentage of the nominal values (index N):

$$G = \frac{\frac{U}{f}}{\frac{U_{N}}{f_{N}}} 100[\%] = \frac{\frac{U}{U_{N}}}{\frac{f}{f_{N}}} 100[\%]$$

The over-dimensioning of generators in this respect is usually about 5%, that of the transformer about 10%, but for unit transformers this factor can be even higher.

At start-up of the function, the protection function generates a warning signal aimed to inform the controller to decrease the excitation. If the time delay determined by the parameter values of the selected characteristics expires, the function generates a trip command to decrease or to switch off the excitation and the generator.

The time delay of the independent characteristic is

$$t(G) = t_{OP}$$
 when $G > G_S$

where

 t_{OP} (seconds) theoretical operating time if $G > G_S$, fix, according to the parameter Min Time Delay setting

G measured value of the characteristic quantity; this is the $\frac{U}{f}$ peak

value as a percentage of the rated $\frac{U_{\scriptscriptstyle N}}{f_{\scriptscriptstyle N}}$ value.

 ${\sf G_S}$ setting value of the characteristic quantity (Start U/f LowSet). This is the $\frac{U_{set}}{f_{set}}$ peak value as a percentage of the rated $\frac{U_{N}}{f_{N}}$ value.

The reset time:

$$t(G) = t_{Drop-off}$$
 when $G < 0.95 * G_S$

where

t_{Drop-off} (seconds) drop-off time if G< 0.95*G_S, fix, value.

The time delay of the IEEE standard dependent time characteristic is

"IEEE square law"

$$t = \frac{0.18*TMS}{\left(\frac{V/f}{V_{N}/f_{N}} - \frac{V_{\text{set}}/f_{\text{set}}}{V_{N}/f_{N}}\right)^{2}} = \frac{0.18*TMS}{\left(G - G_{S}\right)^{2}}$$

where

TMS = 1 ... 60 time multiplier setting, flux value calculated at the measured voltage and frequency, V_N/f_N flux at rated voltage and rated frequency,

set/f_{set} flux setting value.

The maximum delay time is limited by the parameter *Max Time Delay*. This time delay is valid if the flux is below the preset value *Start U/f LowSet*.

This inverse type characteristic is also combined with a minimum time delay, the value of which is set by user parameter *Min. Time Delay*. This time delay is valid if the flux is above the setting value *Start U/f HighSet*.

The reset time:

If the calculated flux is below the drop-off flux value (when $G < 0.95 * G_{\rm S}$), then the calculated flux value decreases linearly to zero. The time to reach zero is defined by the parameter *Cooling Time*.

Overexcitation is a typically symmetrical phenomenon. There are other dedicated protection functions against asymmetry. Accordingly, the processing of a single voltage is sufficient. In a network with isolated start point, the phase voltage is not exactly defined due to the uncertain zero sequence voltage component. Therefore, line-to-line voltages are calculated based on the measured phase voltages, and one of them is assigned to overfluxing protection.

The effective frequency range includes all frequencies where the defined accuracy can be achieved. If the frequency is too small, then the time needed to find the peak values and to calculate the flux increases. In contrast, at high frequencies the accuracy of the detected peak value decreases. The frequency range monitored extends from 10 Hz to 70 Hz. The details are given among the technical data.

Similarly to the frequency range, the voltage range is also limited. If the voltage is too small, the voltage measurement becomes inaccurate due to the sampling. In case of high voltage at low frequencies the voltage transformers may also saturate. Accordingly, the frequency range and the voltage range are closely related. The voltage range monitored extends from 10 V to 170 V. The details are given among the technical data.

The flux range is the combination of the voltage range and the frequency range. For overfluxing protection, the effective flux range extends from 0.5 to 1.5 U_N/f_N .

Technical data

Function	Effective range	Accuracy
Voltage measurement	0,5 1,2Un	< 1%
Frequency measurement	0,8 1,2 fn	< 1%

Table 76 Technical data of the overexcitation protection function

Parameters

Enumerated parameter

Parameter name Title Selection range Defau		Default			
Parameter for type selection					
VPH24_Oper_EPar_	Operation	Off, Definite Time, IEEE	Definite Time		

Table 77 The enumerated parameter of the overexcitation protection function

Integer parameters

Parameter name	Title	Unit	Min	Max	Step	Default
Starting value of the overexcitation protection function						
VPH24_EmaxCont_IPar_	Start U/f LowSet	%	80	140	1	110
Flux value above which the IEEE inverse type characteristic is replaced by the declared minimum time						
VPH24_Emax_IPar_	Start U/f HighSet	%	80	140	1	110
Time multiplier						
VPH24_k_IPar	Time Multiplier		1	100	1	10

Table 78 The integer parameters of the overexcitation protection function

Float point parameters

Parameter name	Title	Unit	Min	Max	Step	Default
						Delault
Minimum time delay for the inverse characteristics and delay for the definite time						
characteristics:						
VPH24_MinDel_FPar_	Min Time Delay	sec	0.5	60.00	0.01	10.00
Maximum time delay for the	inverse characterist	tics:				
VPH24_MaxDel_FPar_	Max Time Delay	sec	300.00	8000.00	0.01	3000.00
Reset time delay for the inverse characteristics:						
VPH24_CoolDel_FPar_	Cooling Time	sec	60.00	8000.00	0.01	1000.00

Table 79 The float point parameters of the overexcitation protection function

1.3.1.17 Current unbalance function (VCB60)

The current unbalance protection function (VCB60) can be applied to detect unexpected asymmetry in current measurement.

The applied method selects maximum and minimum phase currents (RMS value of the fundamental Fourier components). If the difference between them is above the setting limit, the function generates a start signal. It is a necessary precondition of start signal generation that the maximum of the currents be above 10 % of the rated current and below 150% of the rated current.

The Fourier calculation modules calculate the RMS value of the basic Fourier current components of the phase currents individually. They are not part of the VCB60 function; they belong to the preparatory phase.

The analog signal processing module processes the RMS value of the basic Fourier current components of the phase currents to prepare the signals for the decision. It calculates the maximum and the minimum value of the RMS values and the difference between the maximum and minimum of the RMS values of the fundamental Fourier components of the phase currents as a percentage of the maximum of these values (ΔI). If the maximum of the currents is above 10 % of the rated current and below 150% of the rated current and the ΔI value is above the limit defined by the preset parameter (Start Current Diff) an output is generated to the decision module.

The decision logic module combines the status signals to generate the starting signal and the trip command of the function.

The trip command is generated after the defined time delay if trip command is enabled by the Boolean parameter setting.

The function can be disabled by parameter setting, and by an input signal programmed by the user with the graphic programming tool.

Technical data

100mmod: data					
Function	Value	Accuracy			
Pick-up starting accuracy at In		< 2 %			
Reset ratio	0.95				
Operate time	70 ms				

Table 80 Technical data of the current unbalance function

Parameters

Enumerated parameter

Parameter name	Title Selection range		Default
Selection of the operating	mode		
VCB60_Oper_EPar_	Operation	Off, On	On

Table 81 The enumerated parameter of the current unbalance function

Boolean parameter

Parameter name Title		Explanation	Default		
Selection for trip command					
VCB60_StOnly_BPar_	Start Signal Only	0 to generate trip command	0		

Table 82 The boolean parameter of the current unbalance function

Integer parameter

Parameter name	Title	Unit	Min	Max	Step	Default
Phase difference current setting						
VCB60_StCurr_IPar_	Start Current Diff	%	10	90	1	50

Table 83 The integer parameter of the current unbalance function

Timer parameter

Parameter name	Title	Unit	Min	Max	Step	Default
Time delay						
VCB60_Del_TPar_	Time Delay	msec	100	60000	100	1000

Table 84 The timer parameter of the current unbalance function

1.3.1.18 Breaker failure protection function (BRF50)

After a protection function generates a trip command, it is expected that the circuit breaker opens and the fault current drops below the pre-defined normal level.

If not, then an additional trip command must be generated for all backup circuit breakers to clear the fault. At the same time, if required, a repeated trip command can be generated to the circuit breakers which are a priori expected to open.

The breaker failure protection function can be applied to perform this task.

The starting signal of the breaker failure protection function is usually the trip command of any other protection function assigned to the protected object. The user has the task to define these starting signals using the graphic equation editor, or if the operation of the individual phases is needed, then the start signals for the phases individually.

Two dedicated timers start at the rising edge of the start signals at the same time, one for the backup trip command and one for the repeated trip command, separately for operation in the individual phases. During the running time of the timers the function optionally monitors the currents, the closed state of the circuit breakers or both, according to the user's choice. The selection is made using an enumerated parameter.

If current supervision is selected by the user then the current limit values must be set correctly. The binary inputs indicating the status of the circuit breaker poles have no meaning.

If contact supervision is selected by the user then the current limit values have no meaning. The binary inputs indicating the status of the circuit breaker poles must be programmed correctly using the graphic equation editor.

If the parameter selection is "Current/Contact", the current parameters and the status signals must be set correctly. The breaker failure protection function resets only if all conditions for faultless state are fulfilled.

If at the end of the running time of the backup timer the currents do not drop below the predefined level, and/or the monitored circuit breaker is still in closed position, then a backup trip command is generated.

If repeated trip command is to be generated for the circuit breakers that are expected to open, then the enumerated parameter Retrip must be set to "On". In this case, at the end of the retrip timer(s) a repeated trip command is also generated in the phase(s) where the retrip timer(s) run off.

The pulse duration of the trip command is not shorter than the time defined by setting the parameter Pulse length.

The breaker failure protection function can be disabled by setting the enabling parameter to "Off".

Dynamic blocking (inhibition) is possible using the binary input Block. The conditions are to be programmed by the user, using the graphic equation editor.

Technical data

Function	Effective range	Accuracy
Current accuracy		<2 %
Retrip time	approx. 15 ms	
BF time accuracy		<u>+</u> 5 ms
Current reset time	20 ms	

Table 85 Technical data of the breaker failure protection function

Parameters

Enumerated parameters

Parameter name	Title	Selection range	Default		
Selection of the operating mode					
BRF50_Oper_EPar_	Operation	Off, Current, Contact, Current/Contact	Current		
Switching on or off of the repeated trip command					
BRF50_ReTr_EPar_	Retrip	Off, On	On		

Table 86 The enumerated parameters of the breaker failure protection function

Integer parameters

and gen per annexes						
Parameter name	Title	Unit	Min	Max	Step	Default
Phase current setting						
BRF50_StCurrPh_IPar_	Start Ph Current	%	20	200	1	30
Neutral current setting						
BRF50_StCurrN_IPar_	Start Res Current	%	10	200	1	20

Table 87 The integer parameters of the breaker failure protection function

Timer parameters

Parameter name	Title	Unit	Min	Max	Step	Default
Time delay for repeated trip command generation						
BRF50_TrDel_TPar_	Retrip Time Delay	msec	0	10000	1	200
Time delay for trip comman	Time delay for trip command generation for the backup circuit breaker(s)					
BRF50_BUDel_TPar_	Backup Time Delay	msec	60	10000	1	300
Trip command impulse duration						
BRF50_Pulse_TPar_	Pulse Duration	msec	0	60000	1	100

Table 88 The timer parameters of the breaker failure protection function

1.3.1.19 Trip logic (TRC94)

The simple trip logic function operates according to the functionality required by the IEC 61850 standard for the "Trip logic logical node". This simplified software module can be applied if only three-phase trip commands are required, that is, phase selectivity is not applied.

The function receives the trip requirements of the protective functions implemented in the device and combines the binary signals and parameters to the outputs of the device.

The trip requirements are programmed by the user, using the graphic equation editor. The aim of the decision logic is

• to define a minimal impulse duration even if the protection functions detect a very short-time fault.

•

Technical data

Function		Accuracy
Impulse time duration	Setting value	<3 ms

Table 89 Technical data of the simple trip logic function

Parameters

Enumerated parameter

Parameter name Title Selection range		Default			
Selection of the operating mode					
TRC94 Oper EPar	Operation	Off, On	On		

Tables 90 The enumerated parameter of the decision logic

Timer parameter

Parameter name	Title	Unit	Min	Max	Step	Default
Minimum duration of the generated impulse						
TRC94_TrPu_TPar_	Min Pulse Duration	msec	50	60000	1	150

Table 91 Timer parameter of the decision logic

1.3.1.20 Dead line detection function (DLD)

The "Dead Line Detection" (DLD) function generates a signal indicating the dead or live state of the line. Additional signals are generated to indicate if the phase voltages and phase currents are above the pre-defined limits.

The task of the "Dead Line Detection" (DLD) function is to decide the Dead line/Live line state.

<u>Criteria of "Dead line" state</u>: all three phase voltages are below the voltage setting value AND all three currents are below the current setting value.

<u>Criteria of "Live line" state</u>: all three phase voltages are above the voltage setting value.

The details are described in the document **Dead line detection protection function block description.**

Technical data

Function	Value	Accuracy
Pick-up voltage		1%
Operation time	<20ms	
Reset ratio	0.95	

Table 92 Technical data of the dead line detection function

Parameters

Integer parameters

Parameter name	Title	Unit	Min	Max	Step	Default
Integer parameters of the dead line detection function						
DLD_ULev_IPar_	Min. Operate Voltage	%	10	100	1	60
DLD ILev IPar	Min. Operate Current	%	2	100	1	10

Table 93 The integer parameters of the dead line detection function

1.3.1.21 Current input function (CT4)

If the factory configuration includes a current transformer hardware module, the current input function block is automatically configured among the software function blocks. Separate current input function blocks are assigned to each current transformer hardware module.

A current transformer hardware module is equipped with four special intermediate current transformers. (See Chapter 5 of the EuroProt+ hardware description document.) As usual, the first three current inputs receive the three phase currents (IL1, IL2, IL3), the fourth input is reserved for zero sequence current, for the zero sequence current of the parallel line or for any additional current. Accordingly, the first three inputs have common parameters while the fourth current input needs individual setting.

The role of the current input function block is to

- set the required parameters associated to the current inputs,
- deliver the sampled current values for disturbance recording,
- perform the basic calculations
 - o Fourier basic harmonic magnitude and angle,
 - True RMS value;
- provide the pre-calculated current values to the subsequent software modules,
- deliver the basic calculated values for on-line displaying.

Operation of the current input algorithm

The current input function block receives the sampled current values from the internal operating system. The scaling (even hardware scaling) depends on parameter setting. See parameters CT4_Ch13Nom_EPar_ (Rated Secondary I1-3) and CT4_Ch4Nom_EPar_ (Rated Secondary I4). The options to choose from are 1A or 5A (in special applications, 0.2A or 1A). This parameter influences the internal number format and, naturally, accuracy. (A small current is processed with finer resolution if 1A is selected.)

If needed, the phase currents can be inverted by setting the parameter CT4_Ch13Dir_EPar_ (Starpoint I1-3). This selection applies to each of the channels IL1, IL2 and IL3. The fourth current channel can be inverted by setting the parameter CT4_Ch4Dir_EPar (Direction I4). This inversion may be needed in protection functions such as distance protection, differential protection or for any functions with directional decision.

These sampled values are available for further processing and for disturbance recording.

The performed basic calculation results the Fourier basic harmonic magnitude and angle and the true RMS value. These results are processed by subsequent protection function blocks and they are available for on-line displaying as well.

The function block also provides parameters for setting the primary rated currents of the main current transformer. This function block does not need that parameter setting. These values are passed on to function blocks such as displaying primary measured values, primary power calculation, etc.

Technical data

Function	Range	Accuracy
Current accuracy	20 – 2000% of In	±1% of In

Table 94 Technical data of the current input

Parameters

Enumerated parameters

	~					
Parameter name	Title	Selection range	Default			
Rated secondary current of the first three input channels. 1A or 5A is selected by parameter setting, no hardware modification is needed.						
CT4_Ch13Nom_EPar_		1A,5A	1A			
Rated secondary current of the fourth input channel. 1A or 5A is selected by parameter setting, no hardware modification is needed.						
CT4_Ch4Nom_EPar_	Rated Secondary I4	1A,5A (0.2A or 1A)	1A			
Definition of the positive direction of the first three currents, given by location of the secondary star connection point						
CT4_Ch13Dir_EPar_	Starpoint I1-3	Line,Bus	Line			
Definition of the positive of	Definition of the positive direction of the fourth current, given as normal or inverted					
CT4_Ch4Dir_EPar_	Direction I4	Normal,Inverted	Normal			

Table 95 The enumerated parameters of the current input function

Floating point parameters

Parameter name	Title	Dim.	Min	Max	Default	
Rated primary current of channel1						
CT4_Pril1_FPar_	Rated Primary I1	А	100	4000	1000	
Rated primary current of channel2						
CT4_Pril2_FPar	Rated Primary I2	А	100	4000	1000	
Rated primary current of channel3						
CT4_Pril3_FPar_	Rated Primary I3	А	100	4000	1000	
Rated primary current of channel4						
CT4_Pril4_FPar_	Rated Primary I4	Α	100	4000	1000	

Table 96 The floating point parameters of the current input function

NOTE: The rated primary current of the channels is not needed for the current input function block itself. These values are passed on to the subsequent function blocks.

The **measured values** of the current input function block.

Measured value	Dim.	Explanation
Current Ch - I1	A(secondary)	Fourier basic component of the current in channel IL1
Angle Ch - I1	degree	Vector position of the current in channel IL1
Current Ch – I2	A(secondary)	Fourier basic component of the current in channel IL2
Angle Ch – I2	degree	Vector position of the current in channel IL2
Current Ch – I3	A(secondary)	Fourier basic component of the current in channel IL3
Angle Ch – I3	degree	Vector position of the current in channel IL3
Current Ch – I4	A(secondary)	Fourier basic component of the current in channel I4
Angle Ch – I4	degree	Vector position of the current in channel I4

Table 97 The measured analogue values of the current input function

NOTE1: The scaling of the Fourier basic component is such that if pure sinusoid 1A RMS of the rated frequency is injected, the displayed value is 1A. (The displayed value does not depend on the parameter setting values "Rated Secondary".)

NOTE2: The reference of the vector position depends on the device configuration. If a voltage input module is included, then the reference vector (vector with angle 0 degree) is the vector calculated for the first voltage input channel of the first applied voltage input module. If no voltage input module is configured, then the reference vector (vector with angle 0 degree)

is the vector calculated for the first current input channel of the first applied current input module.

 $Figure\ 5$ shows an example of how the calculated Fourier components are displayed in the on-line block. (See the document "EuroProt+ Remote user interface description".)

Figure 5 Example: On-line displayed values for the current input module

1.3.1.22 Voltage input function (VT4)

If the factory configuration includes a voltage transformer hardware module, the voltage input function block is automatically configured among the software function blocks. Separate voltage input function blocks are assigned to each voltage transformer hardware module.

A voltage transformer hardware module is equipped with four special intermediate voltage transformers. (See Chapter 6 of the EuroProt+ hardware description document.) As usual, the first three voltage inputs receive the three phase voltages (UL1, UL2, UL3), the fourth input is reserved for zero sequence voltage or for a voltage from the other side of the circuit breaker for synchron switching. All inputs have a common parameter for type selection: 100V or 200V.

Additionally, there is a correction factor available if the rated secondary voltage of the main voltage transformer (e.g. 110V) does not match the rated input of the device.

The role of the voltage input function block is to

- set the required parameters associated to the voltage inputs,
- deliver the sampled voltage values for disturbance recording,
- perform the basic calculations
 - o Fourier basic harmonic magnitude and angle,
 - o True RMS value;
- provide the pre-calculated voltage values to the subsequent software modules,
- deliver the basic calculated values for on-line displaying.

Operation of the voltage input algorithm

The voltage input function block receives the sampled voltage values from the internal operating system. The scaling (even hardware scaling) depends on parameter setting. See the parameter VT4_Type_EPar_ (Range). The options to choose from are 100V or 200V. This parameter influences the internal number format and, naturally, accuracy. (A small voltage is processed with finer resolution if 100V is selected.)

The connection of the first three VT secondary winding must be set to reflect actual physical connection. The associated parameter is VT4_Ch13Nom_EPar_ (Connection U1-3). The selection can be: Ph-N, Ph-Ph or Ph-N-Isolated.

The Ph-N option is applied in solidly grounded networks, where the measured phase voltage is never above 1.5-Un. In this case the primary rated voltage of the VT must be the value of the rated PHASE-TO-NEUTRAL voltage.

The Ph-N option is applied in compensated or isolated networks, where the measured phase voltage can be above 1.5-Un even in normal operation. In this case the primary rated voltage of the VT must be the value of the rated PHASE-TO-PHASE voltage.

If phase-to-phase voltage is connected to the VT input of the device, then the Ph-Ph option is to be selected. Here, the primary rated voltage of the VT must be the value of the rated PHASE-TO-PHASE voltage. This option must not be selected if the distance protection function is supplied from the VT input.

The fourth input is reserved for zero sequence voltage or for a voltage from the other side of the circuit breaker for synchron switching. Accordingly, the connected voltage must be identified with parameter setting VT4_Ch4Nom_EPar_ (Connection U4). Here, phase-to-neutral or phase-to-phase voltage can be selected: Ph-N,Ph-Ph

If needed, the phase voltages can be inverted by setting the parameter VT4_Ch13Dir_EPar_ (Direction U1-3). This selection applies to each of the channels UL1, UL2 and UL3. The fourth voltage channel can be inverted by setting the parameter VT4_Ch4Dir_EPar_ (Direction U4). This inversion may be needed in protection functions such as distance protection, differential protection or for any functions with directional decision, or for checking the voltage vector positions.

Additionally, there is a correction factor available if the rated secondary voltage of the main voltage transformer (e.g. 110V) does not match the rated input of the device. The related parameter is VT4_CorrFact_IPar_ (VT correction). As an example: if the rated secondary voltage of the main voltage transformer is 110V, then select Type 100 for the parameter "Range" and the required value to set here is 110%.

These sampled values are available for further processing and for disturbance recording.

The performed basic calculation results the Fourier basic harmonic magnitude and angle and the true RMS value of the voltages. These results are processed by subsequent protection function blocks and they are available for on-line displaying as well.

The function block also provides parameters for setting the primary rated voltages of the main voltage transformer. This function block does not need that parameter setting. These values are passed on to function blocks such as displaying primary measured values, primary power calculation, etc. Concerning the rated voltage, see the instructions related to the parameter for the connection of the first three VT secondary winding.

Parameters

Enumerated parameters

Enamerated parameters						
Parameter name	Title	Selection range	Default			
Rated secondary voltage of the input channels. 100 V or 200V is selected by parameter setting, no hardware modification is needed.						
VT4_Type_EPar_	Range	Type 100, Type 200	Type 100			
Connection of the first three	ee voltage inputs (main VT s	econdary)				
VT4_Ch13Nom_EPar_	Connection U1-3	Ph-N, Ph-Ph, Ph-N-Isolated	Ph-N			
Selection of the fourth cha	annel input: phase-to-neutral	or phase-to-phase voltage	Э			
VT4_Ch4Nom_EPar_	Connection U4	Ph-N,Ph-Ph	Ph-Ph			
Definition of the positive direction of the first three input channels, given as normal or inverted						
VT4_Ch13Dir_EPar_	Direction U1-3	Normal,Inverted	Normal			
Definition of the positive direction of the fourth voltage, given as normal or inverted						
VT4_Ch4Dir_EPar_	Direction U4	Normal,Inverted	Normal			

Table 98 The enumerated parameters of the voltage input function

Integer parameter

integer parameter						
Parameter name	Title	Unit	Min	Max	Step	Default
Voltage correction						
VT4 CorrFact IPar	VT correction	%	100	115	1	100

Table 99 The integer parameter of the voltage input function

Floating point parameters

1 loating point parameters						
Parameter name	Title	Dim.	Min	Max	Default	
Rated primary voltage of channel1						
VT4_PriU1_FPar	Rated Primary U1	kV	1	1000	100	
Rated primary voltage of channel2						
VT4_PriU2_FPar	Rated Primary U2	kV	1	1000	100	
Rated primary voltage of channel3						
VT4_PriU3_FPar	Rated Primary U3	kV	1	1000	100	
Rated primary voltage of channel4						
VT4_PriU4_FPar	Rated Primary U4	kV	1	1000	100	

Table 100 The floating point parameters of the voltage input function

NOTE: The rated primary voltage of the channels is not needed for the voltage input function block itself. These values are passed on to the subsequent function blocks.

Function	Range	Accuracy
Voltage accuracy	30% 130%	< 0.5 %

Table 101 Technical data of the voltage input

Measured values

Measured value	Dim.	Explanation
Voltage Ch - U1	V(secondary)	Fourier basic component of the voltage in channel UL1
Angle Ch - U1	degree	Vector position of the voltage in channel UL1
Voltage Ch – U2	V(secondary)	Fourier basic component of the voltage in channel UL2
Angle Ch – U2	degree	Vector position of the voltage in channel UL2
Voltage Ch – U3	V(secondary)	Fourier basic component of the voltage in channel UL3
Angle Ch – U3	degree	Vector position of the voltage in channel UL3
Voltage Ch – U4	V(secondary)	Fourier basic component of the voltage in channel U4
Angle Ch – U4	degree	Vector position of the voltage in channel U4

Table 102 The measured analogue values of the voltage input function

NOTE1: The scaling of the Fourier basic component is such <u>if pure sinusoid 57V RMS</u> of the rated frequency is injected, the displayed value is 57V. (The displayed value does not depend on the parameter setting values "Rated Secondary".)

NOTE2: The reference vector (vector with angle 0 degree) is the vector calculated for the first voltage input channel of the first applied voltage input module.

The figure below shows an example of how the calculated Fourier components are displayed in the on-line block. (See the document EuroProt+ "Remote user interface description".)

Figure 6 Example: On-line displayed values for the voltage input module

1.3.1.23 Automatic tap-changer controller function (ATCC)

One criterion for power quality is to keep the voltage of selected points of the networks within the prescribed limits. The most common mode of voltage regulation is the application of transformers with on-load tap changers. When the transformer is connected to different taps, its turns ratio changes and supposing constant primary voltage, the secondary voltage can be increased or decreased as required.

Voltage control can take the actual load state of the transformer and the network into consideration. As a result, the voltage of a defined remote point of the network is controlled assuring that neither consumers near the busbar nor consumers at the far ends of the network get voltages out of the required range.

The voltage control function can be performed automatically or, in manual mode of operation, the personnel of the substation can set the network voltage according to special requirements.

The automatic tap changer controller function can be applied to perform this task.

The automatic tap changer controller function receives the following analog inputs:

UL1L2	Line-to-line voltage of the controlled secondary side of the transformer
IL1L2	Difference of the selected line currents of the secondary side of the
	transformer for voltage drop compensation
IHV	Maximum of the phase currents of the primary side of the transformer for
	limitation purposes

The parameter "U Correction" permits fine tuning of the measured voltage.

The function performs the following internal checks before control operation (see Figure below):

- If the voltage of the controlled side UL1L2 is above the value set by the parameter "U High Limit", then control to increase the voltage is disabled.
- If the voltage of the controlled side UL1L2 is below the value set by the parameter "U Low Limit", then control to decrease the voltage is disabled.
- If the voltage of the controlled side UL1L2 is below the value set by the parameter "U Low Block", then the transformer is considered to be de-energized and automatic control is completely disabled.
- If the current of the supply side IHV is above the limit set by the parameter "I Overload", then both automatic and manual controls are completely disabled. This is to protect the switches inside the tap changer.

Automatic control mode

Voltage compensation in automatic control mode

The function gets the Fourier components of the busbar voltage and those of the current:

- UL1L2_{Re} and UL1L2_{Im}
- IL1L2_{Re} and IL1L2_{Im}

In automatic control mode the voltage of the controlled side *UL1L2* is compensated by the current of the controlled side *IL1L2*. This means that the voltage of the "load center" of the network is controlled to be constant, in fact within a narrow range. This assures that neither the voltage near to the busbar is too high, nor the voltage at far-away points of the network is too low. The voltage of the "load center", i.e. the controlled voltage is calculated as:

$$|Ucontrol| = |Ubus - Udrop|$$

There are two compensation modes to be selected: "AbsoluteComp" and "ComplexComp".

 If the parameter "Compensation" is set to "AbsoluteComp", the calculation method is as follows:

In this simplified method the vector positions are not considered correctly, the formula above is approximated with the magnitudes only:

$$|Ucontrol| = |Ubus - Udrop| \approx |Ubus| - |Udrop|$$

 $\approx |Ubus| - |I| * (R) Compound Factor$
 where
 $(R) Compound Factor$ is a parameter value.

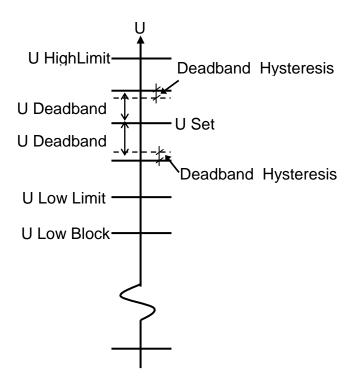
If the current is above the value defined by the parameter "I Comp Limit", then in the formulas above this preset value is considered instead of the higher values measured.

The method is based on the experiences of the network operator. Information is needed: how much is the voltage drop between the busbar and the "load center" if the load of the network is the rated load. The parameter "(R) Compound Factor" means in this case the voltage drop in percent.

 If the parameter "Compensation" is set to "ComplexComp", the calculation method is as follows:

In this simplified method the vector positions are partly considered. In the formula above the voltage drop is approximated with the component of the voltage drop, the direction of which is the same as the direction of the bus voltage vector. (This is "length component" of the voltage drop; the "perpendicular component" of the voltage drop is neglected.)

```
|Ucontrol| = |Ubus \\ - [IL1L2_{Re}*(R)CompoundFactor - IL1L2_{Im}*XCompoundFactor]| where (R)\ Compound\ Factor \qquad \text{is a parameter value} \\ X\ Compound\ Factor \qquad \text{is a parameter value}
```


The voltage of the "load center" of the network is controlled to be within a narrow range. This assures that neither the voltage near to the busbar is too high, nor the voltage at far-away points of the network is too low.

The method is based on the estimated complex impedance between the busbar and the "load center".

The parameter "(R) Compound Factor" means in this case the voltage drop in percent, caused by the real component of the rated current.

The parameter "X Compound Factor" means in this case the voltage drop in percent, caused by the imaginary component of the rated current.

NOTE: if the active power flows from the network to the busbar then in "AbsoluteComp" mode no compounding is performed.

Voltage checking in automatic control mode

In automatic control mode the calculated | *Ucontrol* | voltage is checked to see if it is outside the limits. The limits are defined by parameter values:

U Set U Deadband Deadband Hysteresis is the setting value defining the centre of the permitted range is the width of the permitted range in both + and – directions is the hysteresis decreasing the permitted range of the "U Deadband" after the generation of the control command.

If the calculated | *Ucontrol* | voltage is outside the limits, then timers are started.

In an emergency state of the network, when the network elements are overloaded, the Uset value can be driven to two lower values defined by the parameters "Voltage Reduction 1" and "Voltage Reduction 2". "U Set" is decreased by the parameter values if the binary inputs "VRed 1" or "VRed 2" enter into active state. These inputs must be programmed graphically by the user.

Time delay in automatic control mode

In automatic control mode the first and every subsequent control command is processed separately.

For the first control command:

The voltage difference is calculated:

Udiff= |Ucontrol- Uset|

If this difference is above the U Deadband value, and depending on the setting of parameter "T1 Delay Type", three different timing modes can be selected:

- "Definite" this definite time delay is defined by parameter T1
- "Inverse" standard IDMT characteristic defined by the parameters:
 - o T1 maximum delay defined by the parameter
 - o U Deadband is the width of the permitted range in both + and directions
 - o Min Delay minimum time delay

$$Tdelay = \frac{T\mathbf{1}}{\left(\frac{Udiff}{Udeadband}\right)}, but minimum Min Delay$$

"2powerN"

$$Tdelay = T1 * 2^{\left(1 - \frac{Udiff}{Udeadband}\right)}$$

The binary parameters "Fast Lower Enable" and/or "Fast Higher Enable" enable fast command generation if the voltage is above the parameter value "U High Limit" or below the "U Low Limit". In this case, the time delay is a definite time delay defined by parameter "T2".

For subsequent control commands:

In this case, the time delay is always a definite time delay defined by parameter "T2" if the subsequent command is generated within the "Reclaim time" defined by a parameter.

The automatic control mode can be blocked by a binary signal received via binary input "AutoBlk" and generates a binary output signal "AutoBlocked (ext)"

Manual control mode

In manual mode, the automatic control is blocked. The manual mode can be "Local" or "Remote". For this mode, the input "Manual" needs to be in active state (as programmed by the user).

In the local mode, the input "Local" needs to be in active state. The binary inputs "ManHigher" or "ManLower" must be programmed graphically by the user.

In the remote mode, the input "Remote" needs to be in active state as programmed by the user. In this case manual commands are received via the communication interface.

Command generation and tap changer supervision

The software module "CMD&TC SUPERV" is responsible for the generation of the "HigherCmd" and "LowerCmd" command pulses, the duration of which is defined by the parameter "Pulse Duration". This is valid both for manual and automatic operation.

The tap changer supervision function receives the information about the tap changer position in six bits of the binary inputs "Bit0 to Bit5". The value is decoded according to the enumerated parameter "CodeType", the values of which can be: Binary, BCD or Gray. During switchover, for the transient time defined by the parameter "Position Filter", the position is not evaluated.

The parameters "Min Position" and "Max Position" define the upper and lower limits. In the upper position, no further increasing command is generated and the output "Max Pos Reached" becomes active. Similarly, in the lower position, no further decreasing command is generated and the output "Min Pos Reached" becomes active.

The function also supervises the operation of the tap changer. Depending on the setting of parameter "TC Supervision", three different modes can be selected:

- TCDrive the supervision is based on the input "TCRun". In this case, after command generation the drive is expected to start operation within one quarter of the value defined by the parameter "Max Operating Time" and it is expected to perform the command within "Max Operating Time"
- Position the supervision is based on the tap changer position in six bits of the binary inputs "Bit0 to Bit5". It is checked if the tap position is incremented in case of a voltage increase, or the tap position is decremented in case of a voltage decrease, within the "Max Operating Time".
- Both in this mode the previous two modes are combined.

In case of an error detected in the operation of the tap changer, the "Locked" input becomes active and no further commands are performed. To enable further operation, the input "Reset" must be programmed for an active state by the user.

Technical data

Function	Range	Accuracy
Voltage measurement	50 % < U < 130 %	<1%
Definite time delay		<2% or ±20 ms, whichever is greater
Inverse and "2powerN" time delay	12 % < U < 25%	<5%
	25 % < U < 50%	<2% or ±20 ms, whichever is greater

Table 103 Technical data of the automatic tap-changer controller function

Parameters

Enumerated parameters

Parameter name	Title	Selection range	Default			
Control model, according to IEC 61850						
ATCC_ctlMod_EPar_	ControlModel	Direct normal, Direct enhanced,	Direct normal			
		SBO enhanced				
Select before operate clas	s, according to IEC	61850				
ATCC_sboClass_EPar_	sboClass	Operate-once, Operate-many	Operate-once			
Parameter for general bloc	Parameter for general blocking of the function					
ATCC_Oper_EPar_	Operation	Off,On	Off			
Parameter for time delay n	node selection					
ATCC_T1Type_EPar_	T1 Delay Type	Definite, Inverse, 2powerN Definite				
Selection for compensation	n mode					
ATCC_Comp_EPar_	Compensation	Off, AbsoluteComp, ComplexComp	Off			
Tap changed supervision i	mode selection					
ATCC_TCSuper_EPar_	TC Supervision	Off, TCDrive, Position, Both	Off			
Decoding of the position in	Decoding of the position indicator bits					
ATCC_CodeType_EPar	CodeType	Binary, BCD, Gray	Binary			

Table 104 The enumerated parameters of the automatic tap-changer controller function

Boolean parameters

Parameter name	Title	Explanation	Default
ATCC_FastHigh_BPar_	Fast Higher Enable	Enabling fast higher control command	0
ATCC_FastLow_BPar_	Fast Lower Enable	Enabling fast lower control command	0

Table 105 The boolean parameters of the automatic tap-changer controller function

Integer parameters

Parameter name	Title	Unit	Min	Max	Step	Default	
Code value of the minimum position							
ATCC_MinPos_Ipar_	Min Position		1	32	1	1	
Code value of the maximum position							
ATCC_MaxPos_lpar_	Max Position		1	32	1	32	

Table 106 The integer parameters of the automatic tap-changer controller function

Timer parameters

Parameter name	Title	Unit	Min	Max	Step	Default	
Time limit for tap-change operation							
ATCC_TimOut_TPar_	Max Operating Time	msec	1000	30000	1	5000	
Command impulse duration							
ATCC_Pulse_TPar_	Pulse Duration	msec	100	10000	1	1000	
Time overbridging the transient state of the tap changer status signals							
ATCC_MidPos_TPar_	Position Filter	msec	1000	30000	1	3000	
Select before operate timeout, according to IEC 61850							
ATCC_SBOTimeout_TPar_	SBO Timeout	msec	1000	20000	1	5000	

Table 107 The timer parameters of the automatic tap-changer controller function

Float point parameters

Prioat point parameters		112			D::::	D.C.	
Parameter name	Title	Unit	Min	Max	Digits	Default	
Factor for fine tuning the measured voltage:							
ATCC_Ubias_FPar_	U Correction	-	0.950	1.050	3	1.000	
Set-point for voltage regulation, related to the rated voltage (valid at I=0):							
ATCC_USet_FPar_	U Set	%	80.0	115.0	1	100.0	
Dead band for voltage regul							
ATCC_UDead_FPar_	U Deadband	%	0.5	9.0	1	3.0	
Hysteresis value for the dea	d band, related to the dea	nd band:					
ATCC_DeadHyst_FPar_	Deadband Hysteresis	%	60	90	0	85	
Parameter for the current co	mpensation:						
ATCC_URinc_FPar_	(R) Compound Factor	%	0.0	15.0	1	5.0	
Parameter for the current compensation:							
ATCC_UXinc_FPar_	X Compound Factor	%	0.0	15.0	1	5.0	
Reduced set-point 1 for voltage regulation (priority), related to the rated voltage:							
ATCC_VRed1_FPar_	Voltage Reduction 1	%	0.0	10.0	1	5.0	
Reduced set-point 2 for voltage regulation, related to the rated voltage:							
ATCC_VRed2_FPar_	Voltage Reduction 2	%	0.0	10.0	1	5.0	
Maximum current value to b	e considered in current co	mpensat	ion formu	las:	•	•	
ATCC_ICompLim_FPar_	I Comp Limit	%	0.00	150	0	1	
Current upper limit to disable all operation:							
ATCC_IHVOC_FPar_	I Overload	%	50	150	0	100	
Voltage upper limit to disable step up:.							
ATCC_UHigh_FPar_	U High Limit	%	90.0	120.0	1	110.0	
Voltage lower limit to disable step down:							
ATCC_ULow_FPar_	U Low Limit	%	70.0	110.0	1	90.0	
Voltage lower limit to disable	e all operation:	•	•	•	•		
	U Low Block	%	50.0	100.0	1	70.0	
Time delay for the first control command generation:							
ATCC_T1_FPar_	T1	sec	1.0	600.0	1	10.0	
Definite time delay for subse	equent control command of	generatio	n or fast o	peration (if it is ena	bled):	
ATCC_T2_FPar_	T2	sec	1.0	100.0	1	10.0	
In case of dependent time c	haracteristics, this is the r	ninimum	time delav				
ATCC_MinDel_FPar_	Min Delay	sec	1.0	100.0	1	10.0	
After a control command, if the voltage is out of the range within the reclaim time, then the command							
is generated after T2 time delay							
ATCC_Recl_FPar_	Reclaim Time	sec	1.0	100.0	1	10.0	
T. 1.1. 1.00 TEL CL				7	. 11		

Table 108 The float point parameters of the automatic tap-changer controller function