

Bay control unit configuration description (Type: DVEZ)

Document ID: PP-13-21018 Budapest, May 2015

User's manual version information

Version	Date	Modification	Compiled by	
V1.0		First internal version	Tóth	
V1.1	12.05.2015	Minor correction	Tóth	

CONTENTS

1	Configuration description	4
	1.1 Application	4
	1.1.1 Configurations	4
	1.1.2 Measurement functions	7
	1.1.3 Hardware configuration	8
	1.1.4 The applied hardware modules	9
	• •	
	1.3 Software configuration	
	1.3.1 Protection functions	
	1.3.1.1 Line thermal protection function (TTR49L)	
	1.3.1.2 Definite time overvoltage protection function (TOV59)	
	1.3.1.3 Definite time undervoltage protection function (TUV27)	
	1.3.1.4 Residual definite time overvoltage protection function (TOV59N)	
	1.3.1.5 Synchrocheck function (SYN25)	
	1.3.1.6 Auto-reclose protection function (REC79HV)	
	1.3.1.7 Auto-reclose protection (REC79MV)	
	1.3.1.8 Over-frequency protection function (TOF81)	
	1.3.1.9 Underfrequency protection function (TUF81)	
	1.3.1.10 Rate of change of frequency protection function (FRC81)	
	1.3.1.11 Automatic tap-changer controller function (ATCC)	
	1.3.1.12 Breaker failure protection function (BRF50)	
	1.3.1.13 Phase-selective trip logic (TRC94_PhS)	
	1.3.1.14 Dead line detection function (DLD)	
	1.3.1.15 Voltage transformer supervision function (VTS60)	
	1.3.1.16 Current unbalance function (VCB60)	
	1.3.2 Control functions	
	1.3.2.1 Circuit breaker control function block (CB1Pol)	
	1.3.3 Measuring functions	
	1 ' '	
	1.3.3.2 Voltage input function (VT4)	
	1.3.4 Disturbance recorder	
	1.3.5 Event recorder	
	1.0.0 LYCHILICOULUCI	/ 1
	1.4 LED assignment	71

1 Configuration description

The **DVEZ** bay control unit device is a member of the *EuroProt+* product line, made by Protecta Co. Ltd. The *EuroProt+* type complex protection in respect of hardware and software is a modular device. The modules are assembled and configured according to the requirements, and then the software determines the functions. This manual describes the specific application of the DVEZ factory configurations.

1.1 Application

DVEZ IEDs (inteligent electronic devices) are used for bay control unit applications in transmission and distribution network. They provides full control for any type of switchgears (included the interlocking functions) and other substation application. The DVEZ factory configurations implement the basic functionality, but you can add optional functions to increase functionality of the device.

Optional functions:

Breaker failure protection
Synchrocheck
Automatic reclosing function for HV/MV networks
Automatic voltage regulator (AVR) / tap change control
Remote binary transmission
Remote Binary Communication
Voltage protection functions
Thermal protection
Overfrequency protection
Underfrequency protection
Load shedding

1.1.1 Configurations

The DVEZ bay control unit is available in two basic configuations.

E1-BCU: This configuration has no analog inputs, it is designed for simplified bay control functions to switch and supervise any kind of switchgears at the substation. All binary alarm or warning signals of the substation can be handled in this configuration.

E2-BCU: The configuration is designed to meet the requirements of a complex field control unit for transformer, line or other bays. The measurement functions are implemented, as well. The configuration can be supplemented with current and voltage based functions.

	Configu	ırations		
Function scale	E1-BCU	E2-BCU		
Name	IEC	ANSI	E1-BC0	E2-BC0
Circuit breaker control (included			✓	✓
interlocking function) Disconnector control (included			·	·
interlocking function)			✓	✓
Voltage measurement				√ *
Current measurement				√ *
Line measurement				√*
Average and maximum measurement				√ *
Fuse failure protection (VTS		60		√ *
supervision) Current unbalance protection		60		√ *
Breaker failure protection		50 50		√ Op.
Synchrocheck		25		Op.
Automatic reclosing function for	0 - >1	79	Op.	Op.
HV/MV networks	0-71	73	Οp.	Oβ.
Automatic voltage regulator (AVR) / tap change control		90V		Op.
Remote binary transmission			Op.	Op.
Remote Binary Communication			Op.	Op.
Circuit breaker wear				√ *
Definite time overvoltage protection	U >,	59		Op.
	U >> Uo >.			·
Residual overvoltage protection	Uo	59N		Op.
	>>			·
Definite time undervoltage protection	U <,	27		Op.
	U << f >, f	_		_
Overfrequency protection	>>	810		Op.
Underfrequency protection	f <, f	81U		Op.
Rate of change of frequency	<< df/dt	0.0		- Pr
protection	ui/ut	81R		Op.
Load shedding				Op.
Thermal protection	T>	49		Op.
Supervised trip contacts (TCS)		74TC	√*	√ *

Op.: Optional

✓*: If the HW permits, then basic

 $Table\ 1\ The\ protection\ functions\ of\ the\ DVEZ\ configurations$

The configured functions are drawn symbolically in the Figure below.

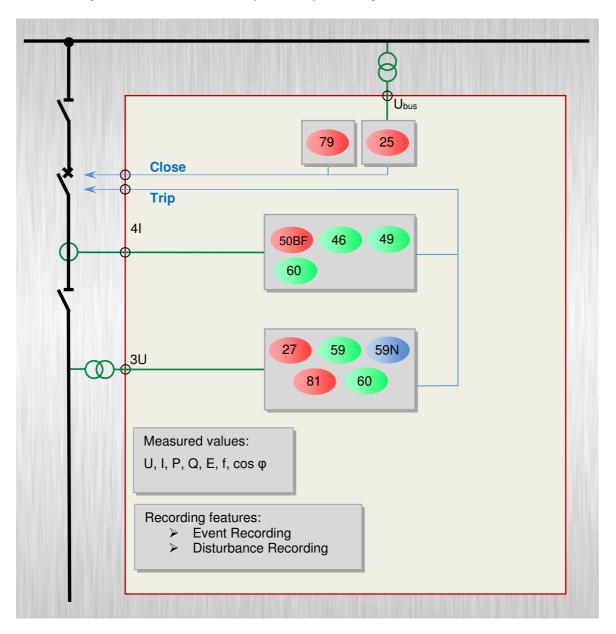


Figure 1 Implemented protection and control functions

1.1.2 Measurement functions

Based on the hardware inputs the measurements listed in Table below are available.

Measurement functions	E2-BCU
Current (I1, I2, I3, Io)	X*
Voltage (U1, U2, U3, U12, U23, U31, Uo, Useq) and frequency	X*
Power (P, Q, S, pf) and Energy (E+, E-, Eq+, Eq-)	X*
Circuit breaker wear	X*
Supervised trip contacts (TCS)	Х*

^{*} If the HW permits, then basic

Table 2 The measurement functions of the E1-, E2-BCU configuration

1.1.3 Hardware configuration

The minimum number of inputs and outputs are listed in the Table below.

Hardware configuration	ANSI	DVEZ
Mounting		Op.
Panel instrument case		
Current inputs (4th channel can be sensitive)		Op.
Voltage inputs		Op.
Digital inputs		Op.
Digital outputs		Op.
Fast trip outputs		Op.
Temperature monitoring (RTDs) *	38 / 49T	Op.

Table 3 The basic hardware configuration of the DVEZ configurations

The basic module arrangement of the DVEZ configurations are shown below.

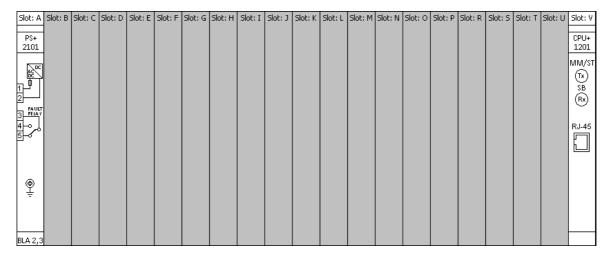


Figure 2 Basic module arrangement of the E1-BCU configuration (84TE, rear view)

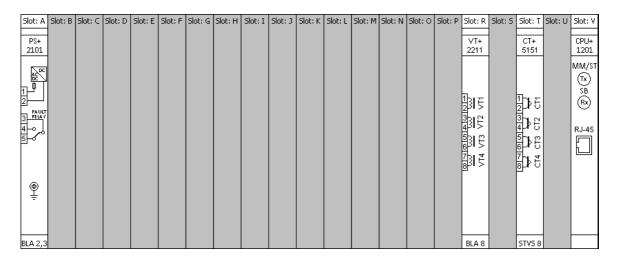


Figure 3 Basic module arrangement of the E2-BCU configuration (84TE, rear view)

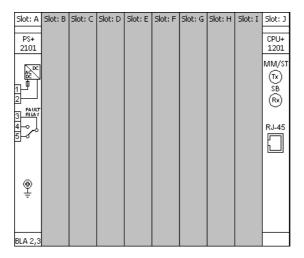


Figure 4 Basic module arrangement of the E1-BCU configuration (42TE, rear view)

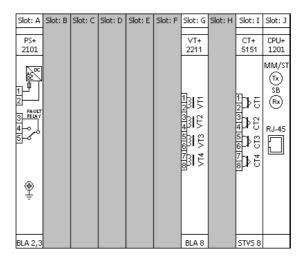


Figure 5 Basic module arrangement of the E2-BCU configuration (42TE, rear view)

1.1.4 The applied hardware modules

The technical specification of the device and that of the modules are described in the document "*Hardware description*".

1.2 Meeting the device

The basic information for working with the *EuroProt+* devices are described in the document "*Quick start guide to the devices of the EuroProt+ product line*".

Figure 6 The 84 inch rack of EuroProt+ family

Figure 7 The 42 inch rack of EuroProt+ family

1.3 Software configuration

1.3.1 Protection functions

The implemented protection functions are listed in * The applied functions depends on the HW and the User's request.

Table 4. The function blocks are described in details in separate documents. These are referred to also in this table.

Name	Title	Document
*TTR49L	Thermal overload	Line thermal protection function block
		description
*TOV59_high	Overvoltage	Definite time overvoltage protection
*TOV59_low		function block description
*TUV27_high	Undervoltage	Definite time undervoltage protection
*TUV27_low		function block description
*TOV59N_high	Overvoltage	Definite time zero sequence overvoltage
*TOV59N_low		protection function block description
*TOF81_high	Overfrequency	Overfrequency protection function block
*TOF81_low		description
*TUF81_high	Underfrequency	Underfrequency protection function block
*TUF81_low		description
*FRC81	ROC of frequency	Rate of change of frequency protection
		function block description
*SYN25	Synchrocheck	Synchro-check, synchro switch function
10000101		block description
*REC79HV	HV Autoreclosing	Automatic reclosing function for high
		voltage networks, function block
*DE07014)/	100/	description
*REC79MV	MV autoreclosing	Automatic reclosing function for medium
		voltage networks, function block
*VCB60	Current Unbalance	description Current unbalance function block
VCB00	Current Unbalance	
*VTS60	Voltage transformer	description
V 1 500	Voltage transformer supervision	Voltage transformer supervision function block description
*BRF50	Breaker failure	Breaker failure protection function block
DULON	Dieakei iallule	description
*DLD	Dead line detection	Dead line detection protection function
ן טבט	Dead line detection	block description
		block description

^{*} The applied functions depends on the HW and the User's request.

Table 4 Implemented protection functions

1.3.1.1 Line thermal protection function (TTR49L)

Basically, line thermal protection measures the three sampled phase currents. RMS values are calculated and the temperature calculation is based on the highest RMS value of the phase currents.

The temperature calculation is based on the step-by-step solution of the thermal differential equation. This method yields "overtemperature", meaning the temperature above the ambient temperature. Accordingly, the temperature of the protected object is the sum of the calculated "overtemperature" and the ambient temperature.

If the calculated temperature (calculated "overtemperature"+ambient temperature) is above the threshold values, alarm, trip and restart blocking status signals are generated.

For correct setting, the following values must be measured and set as parameters: rated load current is the continuous current applied for the measurement, rated temperature is the steady state temperature at rated load current, base temperature is the temperature of the environment during the measurement and the time constant is the measured heating/cooling time constant of the exponential temperature function.

When energizing the protection device, the algorithm permits the definition of the starting temperature as the initial value of the calculated temperature. The parameter Startup Term. is the initial temperature above the temperature of the environment as compared to the rated temperature above the temperature of the environment

The ambient temperature can be measured using e.g. a temperature probe generating electric analog signals proportional to the temperature. In the absence of such measurement, the temperature of the environment can be set using the dedicated parameter TTR49L_Amb_IPar_ (Ambient Temperature). The selection between parameter value and direct measurement is made by setting the binary Boolean parameter.

The problem of metal elements (the protected line) exposed to the sun is that they are overheated as compared to the "ambient" temperature even without a heating current; furthermore, they are cooled mostly by the wind and the heat transfer coefficient is highly dependent on the effects of the wind. As the overhead lines are located in different geographical environments along the tens of kilometers of the route, the effects of the sun and the wind cannot be considered in detail. The best approximation is to measure the temperature of a piece of overhead line without current but exposed to the same environmental conditions as the protected line itself.

The application of thermal protection of the overhead line is a better solution than a simple overcurrent-based overload protection because thermal protection "remembers" the preceding load states of the line and the setting of the thermal protection does not need so a high security margin between the permitted current and the permitted continuous thermal current of the line. In a broad range of load states and in a broad range of ambient temperatures this permits the better exploitation of the thermal and consequently current carrying capacity of the line.

The thermal differential equation to be solved is:

$$\frac{d\Theta}{dt} = \frac{1}{T}(\frac{I^2(t)R}{hA} - \Theta) \text{ , and the definition of the heat time constant is: } T = \frac{cm}{hA}$$

In this differential equation:

I(t) (RMS) heating current, the RMS value usually changes over time;
 R resistance of the line;
 c specific heat capacity of the conductor;
 m mass of the conductor;
 θ rise of the temperature above the temperature of the environment;
 h heat transfer coefficient of the surface of the conductor;
 A area of the surface of the conductor;
 t time.

The solution of the thermal differential equation for constant current is the temperature as the function of time (the mathematical derivation of this equation is described in a separate document):

$$\Theta(t) = \frac{I^2 R}{hA} \left(1 - e^{-\frac{t}{T}} \right) + \Theta_o e^{-\frac{t}{T}}$$

where

 Θ_{\circ} is the starting temperature.

Remember that the calculation of the measurable temperature is as follows:

Temperature(t) = $\Theta(t)$ +Temp ambient

where

Temp ambient

is the ambient temperature.

In a separate document it is proven that some more easily measurable parameters can be introduced instead of the aforementioned ones. Thus, the general form of equation above is:

$$H(t) = \frac{\Theta(t)}{\Theta_n} = \frac{I^2}{I_n^2} \left(1 - e^{-\frac{t}{T}} \right) + \frac{\Theta_o}{\Theta_n} e^{-\frac{t}{T}}$$

where:

H(t) is the "thermal level" of the heated object, this is the temperature as a percentage of the Θ_n reference temperature. (This is a dimensionless quantity but it can also be expressed in a percentage form.)

 Θ_n is the reference temperature above the temperature of the environment, which can be measured in steady state, in case of a continuous I_n reference current.

In is the reference current (can be considered as the nominal current of the heated object). If it flows continuously, then the reference temperature can be measured in steady state.

 $\frac{\Theta_o}{\Theta_n}$ is a parameter of the starting temperature related to the reference temperature

The RMS calculations modul calculate the RMS values of the phase currents individually. The sampling frequency of the calculations is 1 kHz; therefore, theoretically, the frequency components below 500Hz are considered correctly in the RMS values. This module is not part of the thermal overload function; it belongs to the preparatory phase.

The Max selection module selects the maximal value of the three RMS phase currents.

The *Thermal replica module* solves the first order thermal differential equation using a simple step-by-step method and compares the calculated temperature to the values set by parameters. The temperature sensor value proportional to the ambient temperature can be an input (this signal is optional, defined at parameter setting).

The function can be disblaed by parameter, or generates a trip pulse if the calculated temperature exceeds the trip value, or generates a trip signal if the calculated temperature exceeds the trip value given by a parameter but it resets only if the temperature cools below the "Unlock temperature".

The line thermal protection function has two binary input signals. The conditions of the input signal are defined by the user, applying the graphic equation editor. One of the signals can block the line thermal protection function, the other one can reset the accumulated heat and set the temperature to the defined value for the subsequent heating test procedure.

Technical data

Function	Accuracy
Operate time at I>1.2*Itrip	<3 % or <+ 20 ms

Table 5 Technical data of the line thermal protection function

Parameters

Enumerated parameter

Parameter name	Title	Selection range	Default		
Parameter for mode of operation					
TTR49L_Oper_EPar_	Operation	Off, Pulsed, Locked	Pulsed		

Table 6 The enumerated parameter of the line thermal protection function

The meaning of the enumerated values is as follows:

Off the function is switched off; no output status signals are generated;

Pulsed the function generates a trip pulse if the calculated temperature exceeds the

trip value

Locked the function generates a trip signal if the calculated temperature exceeds the

trip value. It resets only if the temperature cools below the "Unlock

temperature".

Integer parameters

Parameter name Title		Unit	Min	Max	Step	Default
Alarm Temperature						
TTR49L_Alm_IPar_	Alarm Temperature	deg	60	200	1	80
Trip Temperature						
TTR49L_Trip_IPar_	Trip Temperature	deg	60	200	1	100
Rated Temperature						
TTR49L_Max_IPar_	Rated Temperature	deg	60	200	1	100
Base Temperature						
TTR49L_Ref_IPar_	Base Temperature	deg	0	40	1	25
Unlock Temperature						
TTR49L_Unl_IPar_	TTR49L_Unl_IPar_ Unlock Temperature		20	200	1	60
Ambient Temperature						
TTR49L_Amb_IPar_	Ambient Temperature	deg	0	40	1	25
Startup Term.						
TTR49L_Str_IPar	Startup Term	%	0	60	1	0
Rated Load Current						
TTR49L_Inom_IPar_	Rated Load Current	%	20	150	1	100
Time constant		-	-			
TTR49L_pT_IPar_	Time Constant	min	1	999	1	10

Table 7 The integer parameters of the line thermal protection function

Boolean parameter

Boolean parameter	Signal title Selection range		Default		
Parameter for ambient temperature sensor application					
TTR49L_Sens_BPar_	Temperature Sensor	No, Yes	No		

Table 8 The boolean parameter of the line thermal protection function

1.3.1.2 Definite time overvoltage protection function (TOV59)

The definite time overvoltage protection function measures three voltages. The measured values of the characteristic quantity are the RMS values of the basic Fourier components of the phase voltages.

The Fourier calculation inputs are the sampled values of the three phase voltages (UL1, UL2, UL3), and the outputs are the basic Fourier components of the analyzed voltages (UL1Four, UL2Four, UL3Four). They are not part of the TOV59 function; they belong to the preparatory phase.

The function generates start signals for the phases individually. The general start signal is generated if the voltage in any of the three measured voltages is above the level defined by parameter setting value.

The function generates a trip command only if the definite time delay has expired and the parameter selection requires a trip command as well.

The overvoltaget protection function has a binary input signal, which serves the purpose of disabling the function. The conditions of disabling are defined by the user, applying the graphic equation editor.

Technical data

Function	Value	Accuracy
Pick-up starting accuracy		< ± 0,5 %
Blocking voltage		< ± 1,5 %
Reset time		
$U < \rightarrow Un$	60 ms	
$U < \rightarrow 0$	50 ms	
Operate time accuracy		< ± 20 ms
Minimum operate time	50 ms	

Table 9 Technical data of the definite time overvoltage protection function

Parameters

Enumerated parameter

Parameter name	Title	Selection range	Default		
Enabling or disabling the overvoltage protection function					
TOV59_Oper_EPar_	Operation	Off, On	On		

Table 10 The enumerated parameter of the definite time overvoltage protection function

Integer parameter

Parameter name	Title	Unit	Min	Max	Step	Default
Voltage level setting. If the measured voltage is above the setting value, the function generates a start signal.						
TOV59_StVol_IPar_	Start Voltage	%	30	130	1	63

Table 11 The integer parameter of the definite time overvoltage protection function

Boolean parameter

Parameter name	Title	Default
Enabling start signal only:		
TOV59_StOnly_BPar_	Start Signal Only	FALSE

Table 12 The boolean parameter of the definite time overvoltage protection function

Timer parameter

Parameter name	Title	Unit	Min	Max	Step	Default
Time delay of the overvoltage protection function.						
TOV59_Delay_TPar_	Time Delay	ms	0	60000	1	100

Table 13 The timer parameter of the definite time overvoltage protection function

1.3.1.3 Definite time undervoltage protection function (TUV27)

The definite time undervoltage protection function measures the RMS values of the fundamental Fourier component of three phase voltages.

The Fourier calculation inputs are the sampled values of the three phase voltages (UL1, UL2, UL3), and the outputs are the basic Fourier components of the analyzed voltages (UL1Four, UL2Four, UL3Four). They are not part of the TUV27 function; they belong to the preparatory phase.

The function generates start signals for the phases individually. The general start signal is generated if the voltage is below the preset starting level parameter setting value and above the defined blocking level.

The function generates a trip command only if the definite time delay has expired and the parameter selection requires a trip command as well.

The operation mode can be chosen by the type selection parameter. The function can be disabled, and can be set to "1 out of 3", "2 out of 3", and "All".

The overvoltage protection function has a binary input signal, which serves the purpose of disabling the function. The conditions of disabling are defined by the user, applying the graphic equation editor.

Technical data

Function	Value	Accuracy
Pick-up starting accuracy		< ± 0,5 %
Blocking voltage		< ± 1,5 %
Reset time		
$U > \rightarrow Un$	50 ms	
$U > \rightarrow 0$	40 ms	
Operate time accuracy		< ± 20 ms
Minimum operate time	50 ms	

Table 14 Technical data of the definite time undervoltage protection function

Parameters

Enumerated parameter

Parameter name	Title	Selection range	Default		
Parameter for type selection					
TUV27 Oper EPar	Operation	Off, 1 out of 3, 2 out of 3, All	1 out of 3		

Table 15 The enumerated parameter of the definite time undervoltage protection function

Integer parameters

Parameter name	Title	Unit	Min	Max	Step	Default
Starting voltage level setting						
TUV27_StVol_IPar_	Start Voltage	%	30	130	1	52
Blocking voltage level setting						
TUV27_BlkVol_IPar_	Block Voltage	%	0	20	1	10

Table 16 The integer parameters of the definite time undervoltage protection function

Boolean parameter

Parameter name	Title	Default
Enabling start signal only:		
TUV27_StOnly_BPar_	Start Signal Only	FALSE

Table 17 The boolean parameter of the definite time undervoltage protection function

Timer parameters

Parameter name	Title	Unit	Min	Max	Step	Default
Time delay of the undervoltage protection function.						
TUV27_Delay_TPar_	Time Delay	ms	0	60000	1	100

Table 18 The timer parameter of the definite time undervoltage protection function

1.3.1.4 Residual definite time overvoltage protection function (TOV59N)

The residual definite time overvoltage protection function operates according to definite time characteristics, using the RMS values of the fundamental Fourier component of the zero sequence voltage (UN=3Uo).

The Fourier calculation inputs are the sampled values of the residual or neutral voltage (UN=3Uo) and the outputs are the RMS value of the basic Fourier components of those.

The function generates start signal if the residual voltage is above the level defined by parameter setting value.

The function generates a trip command only if the definite time delay has expired and the parameter selection requires a trip command as well.

The residual overvoltage protection function has a binary input signal, which serves the purpose of disabling the function. The conditions of disabling are defined by the user, applying the graphic equation editor.

Technical data

Function	Value	Accuracy
Pick-up starting accuracy	2-8%	< ± 2 %
Fick-up starting accuracy	8 – 60 %	< ± 1.5 %
Reset time		
$U > \rightarrow Un$	60 ms	
$U > \rightarrow 0$	50 ms	
Operate time	50 ms	< ± 20 ms

Table 19 Technical data of the residual definite time overvoltage protection function

Parameters

Enumerated parameter

Parameter name	Title	Selection range	Default			
Parameter for enabling/disabling:						
TOV59N_Oper_EPar_	Operation	Off, On	On			

Table 20 The enumerated parameter of the residual definite time overvoltage protection function

Integer parameter

Parameter name	Title	Unit	Min	Max	Step	Default
Starting voltage parameter:						
TOV59N_StVol_IPar_	Start Voltage	%	2	60	1	30

Table 21 The integer parameter of the residual definite time overvoltage protection function

Boolean parameter

Parameter name	Title	Default
Enabling start signal only:		
TOV59N_StOnly_BPar_	Start Signal Only	FALSE

Table 22 The boolean parameter of the residual definite time overvoltage protection function

Timer parameter

Parameter name	Title	Unit	Min	Max	Step	Default
Definite time delay:						
TOV59N_Delay_TPar_	Time Delay	ms	0	60000	1	100

Table 23 The time parameter of the residual definite time overvoltage protection function

1.3.1.5 Synchrocheck function (SYN25)

Several problems can occur in the electric power system if the circuit breaker closes and connects two systems operating asynchronously. The high current surge can cause damage in the interconnecting elements, the accelerating forces can overstress the shafts of rotating machines or, at last, the actions taken by the protective system can result in the unwanted separation of parts of the electric power system.

To prevent such problems, this function checks whether the systems to be interconnected are operating synchronously. If yes, then the close command is transmitted to the circuit breaker. In case of asynchronous operation, the close command is delayed to wait for the appropriate vector position of the voltage vectors on both sides of the circuit breaker. If the conditions for safe closing cannot be fulfilled within an expected time, then closing is declined.

The conditions for safe closing are as follows:

- The difference of the voltage magnitudes is below the declared limit,
- The difference of the frequencies is below the declared limit and
- The angle difference between the voltages on both sides of the circuit breaker is within the declared limit.

The function processes both automatic reclosing and manual close commands.

The limits for automatic reclosing and manual close commands can be set independently of each other.

The function compares the voltage of the line and the voltage of one of the bar sections (Bus1 or Bus2). The bus selection is made automatically based on a binary input signal defined by the user applying the graphic equation editor.

As to voltages: any phase-to-ground or phase-to-phase voltage can be selected.

The function processes the signals of the voltage transformer supervision function and enables the close command only in case of plausible voltages.

There are three modes of operation:

- Energizing check:
 - Dead bus, live line,
 - Live bus, dead line,
 - o Any Energizing Case (including Dead bus, dead line).
- Synchro check (Live line, live bus)
- Synchro switch (Live line, live bus)

If the conditions for "Energizing check" or "Synchro check" are fulfilled, then the function generates the release command, and in case of a manual or automatic close request, the close command is generated.

If the conditions for energizing or synchronous operation are not met when the close request is received, then synchronous switching is attempted within the set time-out. In this case, the rotating vectors must fulfill the conditions for safe switching within the declared waiting time: at the moment the contacts of the circuit breaker are closed, the voltage vectors must match each other with appropriate accuracy. For this mode of operation, the expected operating time of the circuit breaker must be set as a parameter value, to generate the close command in advance taking the relative vector rotation speed into consideration.

The started checking procedure can be interrupted by a cancel command defined by the user in the graphic equation editor.

In "bypass" operation mode, the function generates the release signals and simply transmits the close command.

The function can be started by the switching request signals initiated both the automatic reclosing and the manual closing. The binary input signals are defined by the user, applying the graphic equation editor.

Blocking signal of the function are defined by the user, applying the graphic equation editor.

Blocking signal of the voltage transformer supervision function for all voltage sources are defined by the user, applying the graphic equation editor.

Signal to interrupt (cancel) the automatic or the manual switching procedure are defined by the user, applying the graphic equation editor.

Technical data

Function	Effective range	Accuracy in the effective range
Rated Voltage Un	100/20	0V, parameter setting
Voltage effective range	10-110 % of Un	±1% of Un
Frequency	47.5 – 52.5 Hz	±10 mHz
Phase angle		±3°
Operate time	Setting value	±3 ms
Reset time	<50 ms	
Reset ratio	0.95 Un	

Table 24 Technical data of the synchro check / synchro switch function

Parameters

Enumerated parameters

Parameter name	Title	Selection range	Default	
Selection of the processed	voltage			
SYN25_VoltSel_EPar_	Voltage Select	L1-N,L2-N,L3-N,L1-L2,L2-L3,L3-L1	L1-N	
Operation mode for automatic switching				
SYN25_OperA_EPar_	Operation Auto	Off, On, ByPass	On	
Enabling/disabling automatic synchro switching				
SYN25_SwOperA_EPar_	SynSW Auto	Off, On	On	
Energizing mode for automatic switching				
SYN25 EnOperA EPar	Energizing Auto	Off, DeadBus LiveLine, LiveBus	DeadBus	
		DeadLine, Any energ case	LiveLine	
Operation mode for manua				
SYN25_OperM_EPar_	Operation Man	Off, On, ByPass	On	
Enabling/disabling manual	synchro switching			
SYN25_SwOperM_EPar	SynSW Man	Off, On	On	
_				
Energizing mode for manual switching				
SYN25_EnOperM_EPar_	Energizing Man	Off,DeadBus LiveLine, LiveBus	DeadBus	
OTIVES_ENOPERIORET AI_	Litergizing Man	DeadLine, Any energ case	LiveLine	

Table 25 The enumerated parameters of the synchro check / synchro switch function

Integer parameters

Parameter name	Title	Unit	Min	Max	Step	Default
Voltage limit for "live line" det	tection					
SYN25_LiveU_IPar_	U Live	%	60	110	1	70
Voltage limit for "dead line" detection						
SYN25_DeadU_IPar_	U Dead	%	10	60	1	30
Voltage difference for automa	atic synchro checking	g mode				
SYN25_ChkUdA_IPar_	Udiff SynCheck Auto	%	5	30	1	10
Voltage difference for automa	atic synchro switching	g mode				
SYN25_SwUdA_IPar_	Udiff SynSW Auto	%	5	30	1	10
Phase difference for automat	tic switching					
SYN25_MaxPhDiffA_IPar_	MaxPhaseDiff Auto	deg	5	80	1	20
Voltage difference for manua	ll synchro checking m	node				
SYN25_ChkUdM_IPar_	Udiff SynCheck Man	%	5	30	1	10
Voltage difference for manua	Voltage difference for manual synchro switching mode					
SYN25_SwUdM_IPar_	Udiff SynSW Man	%	5	30	1	10
Phase difference for manual						
SYN25_MaxPhDiffM_IPar_	MaxPhaseDiff Man	deg	5	80	1	20

Table 26 The integer parameters of the synchro check / synchro switch function

Floating point parameters

Parameter name	Title	Dim.	Min	Max	Default
Frequency difference for automatic synchro checking mode					
SYN25_ChkFrDA_FPar_	FrDiff SynCheck Auto	Hz	0.02	0.5	0.02
Frequency difference for automatic synchro switching mode					
SYN25_SwFrDA_FPar_	FrDiff SynSW Auto	Hz	0.10	1.00	0.2
Frequency difference for ma	nual synchro checking	mode			
SYN25_ChkFrDM_FPar_	FrDiff SynCheck Man	Hz	0.02	0.5	0.02
Frequency difference for manual synchro switching mode					
SYN25_SwFrDM_FPar_	FrDiff SynSW Man	Hz	0.10	1.00	0.2

 $Table\ 27\ The\ floating\ point\ parameters\ of\ the\ synchro\ check\ /\ synchro\ switch\ function$

Timer parameters

Parameter name	Title	Unit	Min	Max	Step	Default
Breaker operating time at closing						
SYN25_CBTrav_TPar_	Breaker Time	msec	0	500	1	80
Impulse duration for close command						
SYN25_SwPu_TPar_	Close Pulse	msec	10	60000	1	1000
Maximum allowed switching time						
SYN25_MaxSw_TPar_	Max Switch Time	msec	100	60000	1	2000

Table 28 The timer parameters of the synchro check / synchro switch function

1.3.1.6 Auto-reclose protection function (REC79HV)

The HV automatic reclosing function for high voltage networks can realize up to four shots of reclosing. The dead time can be set individually for each reclosing and separately for single-phase faults and for multi-phase faults.

The starting signal of the cycles can be generated by any combination of the protection functions or external signals of the binary inputs. The selection is made by graphic equation programming.

The automatic reclosing function is triggered if as a consequence of a fault a protection function generates a trip command to the circuit breaker and the protection function resets because the fault current drops to zero or the circuit breaker's auxiliary contact signals open state. According to the preset parameter values, either of these two conditions starts counting the dead time, at the end of which the HV automatic reclosing function generates a close command automatically. If the fault still exists or reappears, then within the "Reclaim time" started at the close command the protection functions picks up again and the subsequent cycle is started. If no pickup is detected within this time, then the HV automatic reclosing cycle resets and a new fault will start the procedure with the first cycle again.

At the moment of generating the close command, the circuit breaker must be ready for operation, which is signaled via a binary input (CB Ready). The Boolean parameter "CB State Monitoring" enables the function. The preset parameter value (CB Supervision time) decides how long the HV automatic reclosing function is allowed to wait at the end of the dead time for this signal. If the signal is not received during this dead time extension, then the HV automatic reclosing function terminates.

Depending on binary parameter settings, the automatic reclosing function block can accelerate trip commands of the individual reclosing cycles. This function needs user-programmed graphic equations to generate the accelerated trip command.

In case of a manual close command which is assigned to the logic variable "Manual Close" using graphic equation programming, a preset parameter value decides how long the HV automatic reclosing function should be disabled after the manual close command.

The duration of the close command depends on preset parameter value "Close command time", but the close command terminates if any of the protection functions issues a trip command.

The HV automatic reclosing function can control up to four reclosing cycles. Depending on the preset parameter value "Reclosing cycles", there are different modes of operation:

Disabled No automatic reclosing is selected,

1. Enabled Only one automatic reclosing cycle is selected,
 1.2. Enabled Two automatic reclosing cycles are activated,
 1.2.3. Enabled Three automatic reclosing cycles are activated,
 1.2.3.4. Enabled All automatic reclosing cycles are activated.

The function can be switched Off /On using the parameter "Operation"

The user can also block the HV automatic reclosing function applying the graphic equation editor. The binary status variable to be programmed is "Block".

Depending on the present parameter value "Reclosing started by", the HV automatic reclosing function can be started either by resetting of the TRIP command or by the binary signal indicating the open state of the circuit breaker.

If the reset state of the TRIP command is selected to start the HV automatic reclosing function, then the conditions are defined by the user applying the graphic equation editor. The binary status variable to be programmed is "AutoReclosing Start".

If the open state of the circuit breaker is selected to start the HV automatic reclosing function, then additionally to programming the "AutoReclosing Start" signal, the conditions for detecting the open state of the CB are defined by the user applying the graphic equation editor.

For all four reclosing cycles, separate dead times can be defined for single-phase-reclosing after single-phase trip commands (as a consequence of single-phase faults) and for three-phase-reclosing after three-phase trip commands (as a consequence of multi-phase faults).

The different dead time settings of single-phase-reclosing and three-phase-reclosing can be justified as follows: in case of a single-phase fault, only the circuit breakers of the faulty phase open. In this case, due to the capacitive coupling of the healthy phases, the extinction of the secondary arc at the fault location can be delayed. Consequently, a longer dead time is needed for the fault current to die out than in the case of a three-phase open state, when no coupled voltage can sustain the fault current.

From other point of view, in case of a transmission line connecting two power systems, only a shorter dead time is allowed for the three-phase open state because, due to the possible power unbalance between the interconnected systems, a large angle difference can be reached if the dead time is too long. If only a single phase is open, then the two connected healthy phases and the ground can sustain the synchronous operation of both power systems.

Special dead time can be necessary if a three-phase fault arises near either substation of a line and the protection system operates without tele-protection. If the three-phase dead time is too short, the HV automatic reclosing may attempt to close the circuit breaker during the running time of the second zone trip at the other side. Consequently, a prolonged dead time is needed if the fault was detected in the first zone.

Dead time reduction may be applicable if healthy voltage is measured in all three phases during the dead time, this means that no fault exists on the line. In this case, the expiry of the normal dead time need not be waited for; a reclosing attempt can be initiated immediately.

If, during the cycles, the three-phase dead time is applied once, then all subsequent cycles will consider the three-phase dead time settings, too.

Three-phase reclosing can be disabled by a preset parameter value.

At the end of the dead time, reclosing is possible only if the circuit breaker can perform the command. The conditions are defined by the user applying the graphic equation editor.

Reclosing is possible only if the conditions required by the "synchro-check" function are fulfilled. The conditions are defined by the user applying the graphic equation editor. The HV automatic reclosing function waits for a pre-programmed time for this signal. This time is defined by the user. If the "SYNC Release" signal is not received during the running time of this timer, then the "synchronous switch" operation is started.

The separate function controls the generation of the close command in case of relatively rotating voltage vectors on both sides of the open circuit breaker to make contact at the synchronous state of the rotating vectors. For this calculation, the closing time of the circuit breaker must be defined.

When the close command is generated, a timer is started to measure the "Reclaim time". If the fault is detected again during this time, then the sequence of the HV automatic reclosing cycles continues. If no fault is detected, then at the expiry of the reclaim time the reclosing is evaluated as successful and the function resets. If fault is detected after the expiry of this timer, then the cycles restart with the first reclosing cycle.

If the manual close command is received during the running time of any of the cycles, then the HV automatic reclosing function resets.

After a manual close command, the HV automatic reclosing function does not operate for the time period defined by a parameter.

In case of evolving faults i.e. when a detected single-phase fault changes to multi-phase fault, the behavior of the automatic reclosing function is controlled by the preset parameter value "Evolving fault". The options are "Block Reclosing" or "Start 3Ph Rec."

Depending on binary parameter settings, the automatic reclosing function block can accelerate trip commands of the individual reclosing cycles.

Technical data

Function	Accuracy
Operating time	±1% of setting value or ±30 ms

Table 29 Technical data of the rate of auto-reclose function

Parameters

Enumerated parameters

= ::a:::o:a:oa pa:a:::o:o:	•				
Parameter name	Title	Selection range	Default		
Switching ON/OFF the HV	automatic rec	losing function			
REC79_Op_EPar_	Operation	Off, On	On		
Selection of the number of reclosing sequences					
REC79_CycEn_EPar_	Reclosing Cycles	Disabled, 1. Enabled, 1.2. Enabled, 1.2.3. Enabled, 1.2.3.4. Enabled	1. Enabled		
Selection of triggering the	dead time cou	nter (trip signal reset or circuit breaker op	en position)		
REC79_St_EPar_	Reclosing Started by	Trip reset, CB open	Trip reset		
Selection of behavior in case of evolving fault (block reclosing or perform three-phase automatic reclosing cycle)					
REC79_EvoFlt_EPar_	Evolving Fault	Block Reclosing, Start 3Ph Rec.	Block Reclosing		

Table 30 The enumerated parameters of the rate of auto-reclose function

Timer parameters

Timer parameters						
Parameter name	Title	Unit	Min	Max	Step	Default
Dead time setting for the fir	st reclosing cycle for single	-phase fa	ult			
REC79_1PhDT1_TPar_	1. Dead Time 1Ph	msec	0	100000	10	500
Dead time setting for the se	econd reclosing cycle for sir	ngle-phas	e fault			
REC79_1PhDT2_TPar_	2. Dead Time 1Ph	msec	10	100000	10	600
Dead time setting for the th	ird reclosing cycle for single	e-phase fa	ault			
REC79_1PhDT3_TPar_	3. Dead Time 1Ph	msec	10	100000	10	700
Dead time setting for the fo	urth reclosing cycle for sing	le-phase	fault			
REC79_1PhDT4_TPar_	4. Dead Time 1Ph	msec	10	100000	10	800
Dead time setting for the fir	st reclosing cycle for multi-	ohase fau	lt			
REC79_3PhDT1_TPar_1	1. Dead Time 3Ph	msec	0	100000	10	1000
Special dead time setting for	or the first reclosing cycle for	r multi-ph	ase faul	lt		
REC79_3PhDT1_TPar_2	1. Special DT 3Ph	msec	0	100000	10	1350
Dead time setting for the se	econd reclosing cycle for mi	ulti-phase	fault			
REC79_3PhDT2_TPar_	2. Dead Time 3Ph	msec	10	100000	10	2000
Dead time setting for the th	ird reclosing cycle for multi-	phase fa	ult			
REC79_3PhDT3_TPar_	3. Dead Time 3Ph	msec	10	100000	10	3000
Dead time setting for the fo	urth reclosing cycle for mul	ti-phase f	ault			
REC79_3PhDT4_TPar_	4. Dead Time 3Ph	msec	10	100000	10	4000
Reclaim time setting						
REC79_Rec_TPar_	Reclaim Time	msec	100	100000	10	2000
Impulse duration setting for	the CLOSE command					
REC79_Close_TPar_	Close Command Time	msec	10	10000	10	100
Setting of the dynamic bloc	king time					
REC79_DynBlk_TPar_	Dynamic Blocking Time	msec	10	100000	10	1500
	after manual close comma	nd				
REC79_MC_TPar_	Block after Man.Close	msec	0	100000	10	1000
	max. allowable duration bet	ween prot				
REC79_Act_TPar_	Action Time	msec	0	20000	10	1000
	Limitation of the starting signal (trip command is too long or the CB open signal received too late)					
REC79_MaxSt_TPar_	Start Signal Max Time	msec	0	10000	10	1000
Max. delaying the start of the					_	
REC79_DtDel_TPar_	DeadTime Max Delay	msec	0	100000	10	3000
Waiting time for circuit brea						
REC79_CBTO_TPar_	CB Supervision Time	msec	10	100000	10	1000
Waiting time for synchrono						
REC79_SYN1_TPar_	Syn Check Max Time	msec	500	100000	10	10000
Waiting time for synchrono		_	_		_	
REC79_SYN2_TPar_		msec	500	100000	10	10000
T 11 21 T	C 41			1	. •	

Table 31 The timer parameters of the rate of auto-reclose function

Boolean parameters

Parameter name	Title	Default	Explanation
REC79_CBState_BPar_	CB State Monitoring	0	Enable CB state monitoring for "Not Ready" state
REC79_3PhRecBlk_BPar_	Disable 3Ph Rec.	0	Disable three-phase reclosing
REC79_Acc1_BPar_	Accelerate 1.Trip	0	Accelerate trip command at starting cycle 1
REC79_Acc2_BPar_	Accelerate 2.Trip	0	Accelerate trip command at starting cycle 2
REC79_Acc3_BPar_	Accelerate 3.Trip	0	Accelerate trip command at starting cycle 3
REC79_Acc4_BPar_	Accelerate 4.Trip	0	Accelerate trip command at starting cycle 4
REC79_Acc5_BPar_	Accelerate FinTrip	0	Accelerate final trip command

Table 32 The boolean parameters of the rate of auto-reclose function

1.3.1.7 Auto-reclose protection (REC79MV)

The MV automatic reclosing function can realize up to four shots of reclosing for medium-voltage networks. The dead time can be set individually for each reclosing and separately for earth faults and for multi-phase faults. All shots are of three phase reclosing.

The starting signal of the cycles can be generated by any combination of the protection functions or external signals of the binary inputs.

The automatic reclosing function is triggered if as a consequence of a fault a protection function generates a trip command to the circuit breaker and the protection function resets because the fault current drops to zero or the circuit breaker's auxiliary contact signals open state. According to the preset parameter values, either of these two conditions starts counting the dead time, at the end of which the MV automatic reclosing function generates a close command automatically. If the fault still exits or reappears, then within the "Reclaim time" the protection functions picks up again and the subsequent cycle is started. If the fault still exists at the end of the last cycle, the MV automatic reclosing function trips and generates the signal for final trip. If no pickup is detected within this time, then the MV automatic reclosing cycle resets and a new fault will start the procedure with the first cycle again.

At the moment of generating the close command, the circuit breaker must be ready for operation, which is signaled via the binary input "CB Ready". The preset parameter value "CB Supervision time" decides how long the MV automatic reclosing function is allowed to wait at the end of the dead time for this signal. If the signal is not received during this dead time extension, then the MV automatic reclosing function terminates.

Depending on binary parameter settings, the automatic reclosing function block can accelerate trip commands of the individual reclosing cycles. This function needs user-programmed graphic equations to generate the accelerated trip command.

The duration of the close command depends on preset parameter value "Close command time", but the close command terminates if any of the protection functions issues a trip command.

The MV automatic reclosing function can control up to four reclosing cycles. Depending on the preset parameter values "EarthFaults Rec,Cycle" and "PhaseFaults Rec,Cycle", there are different modes of operation, both for earth faults and for multi-phase faults:

Disabled No automatic reclosing is selected,

Enabled Only one automatic reclosing cycle is selected,
 Enabled Two automatic reclosing cycles are activated,
 Enabled Three automatic reclosing cycles are activated,
 All automatic reclosing cycles are activated.

The function can be switched Off /On using the parameter "Operation".

The user can also block the MV automatic reclosing function applying the graphic equation editor. The binary status variable to be programmed is "Block".

Depending on the preset parameter value "Reclosing started by", the MV automatic reclosing function can be started either by resetting of the TRIP command or by the binary signal indicating the open state of the circuit breaker.

If the reset state of the TRIP command is selected to start the MV automatic reclosing function, then the conditions are defined by the user applying the graphic equation editor. The binary status variable to be programmed is "AutoReclosing Start".

If the open state of the circuit breaker is selected to start the MV automatic reclosing function, then additionally to programming the "AutoReclosing Start" signal, the conditions for detecting the open state of the CB are defined by the user applying the graphic equation editor.

For all four reclosing cycles, separate dead times can be defined for line-to-line faults and for earth faults. The dead time counter of any reclosing cycle is started by the starting signal but starting can be delayed.

Reclosing is possible only if the conditions required by the "synchro-check" function are fulfilled. The conditions are defined by the user applying the graphic equation editor. The HV automatic reclosing function waits for a pre-programmed time for this signal. This time is defined by the user. If the "SYNC Release" signal is not received during the running time of this timer, then the "synchronous switch" operation is started. If no synchronous switching is possible, then the MV automatic reclosing function resets.

In case of a manual close command which is assigned to the binary input "Manual Close" using graphic equation programming, a preset parameter value decides how long the MV automatic reclosing function should be disabled after the manual close command.

The MV automatic reclosing function can be blocked by a binary input. The conditions are defined by the user applying the graphic equation editor.

Technical data

Function	Accuracy
Operating time	±1% of setting value or ±30 ms

Table 33 Technical data of the auto-reclosing protection function

Parameters

Enumerated parameters

Parameter name	Title	Selection range	Default		
Switching ON/OFF the MV automatic reclosing function					
REC79_Op_EPar_	Operation	Off, On	On		
Selection of the number of reclosing sequences in case of earth faults					
REC79_EFCycEn_EPar	EarthFault RecCycle	Disabled, 1. Enabled, 1.2. Enabled, 1.2.3. Enabled, 1.2.3.4. Enabled	1. Enabled		
Selection of the number of	reclosing seq	uences in case of line-to-line faults			
REC79_PhFCycEn_EPa r_	PhaseFault RecCycle	Disabled, 1. Enabled, 1.2. Enabled, 1.2.3. Enabled, 1.2.3.4. Enabled	1. Enabled		
Selection of triggering the dead time counter (trip signal reset or circuit breaker open position)					
REC79_St_EPar_	Reclosing Started by	Trip reset, CB open	Trip reset		

Table 34 The enumerated parameters of the auto-reclosing protection function

Dead time setting for the first reclosing cycle for line-to-line fault	Timer parameters						
Dead time setting for the first reclosing cycle for line-to-line fault REC79_PhDT1_TPar	Parameter name	Title	Unit	Min	Max	Ste	Defaul
REC79 PhDT1 TPar						р	t
Dead time setting for the second reclosing cycle for line-to-line fault REC79 PhDT2 TPar			to-line fau				
REC79 PhDT2 TPar 2. Dead Time Ph	REC79_PhDT1_TPar_	1. Dead Time Ph	msec	0	100000	10	500
Dead time setting for the third reclosing cycle for line-to-line fault REC79_PhDT3_TPar			line-to-line			_	_
REC79 PhDT3 TPar		1			100000	10	600
Dead time setting for the fourth reclosing cycle for line-to-line fault REC79 PhDT4_TPar		third reclosing cycle for line	e-to-line fa	ult			
REC79_PhDT4_TPar	REC79_PhDT3_TPar_	3. Dead Time Ph	msec	10	100000	10	700
Dead time setting for the first reclosing cycle for earth fault REC79_EFDT1_TPar	Dead time setting for the	fourth reclosing cycle for lir	ne-to-line f	ault			
REC79_EFDT1_TPar_ 1. Dead Time EF msec 0 100000 10 1000	REC79_PhDT4_TPar_	4. Dead Time Ph	msec	10	100000	10	800
Dead time setting for the second reclosing cycle for earth fault REC79_EF DT2_TPar_ 2. Dead Time EF msec 10 100000 10 2000 Dead time setting for the third reclosing cycle for earth fault REC79_EF DT3_TPar 3. Dead Time EF msec 10 100000 10 3000 Dead time setting for the fourth reclosing cycle for earth fault REC79_EF DT4_TPar 4. Dead Time EF msec 10 100000 10 4000 Reclaim time setting REC79_Rec_TPar Reclaim Time msec 10 100000 10 2000 Impulse duration setting for the CLOSE command REC79_Close_TPar_ Close Command Time msec 10 100000 10 100 Setting of the dynamic blocking time REC79_DynBlk_TPar Dynamic Blocking Time msec 10 100000 10 1500 Setting of the blocking time after manual close command REC79_MC_TPar_ Block after Man Close msec 0 100000 10 1000 Setting of the action time (max. allowable duration between protection start and trip) REC79_Act_TPar_ Action Time msec 0 20000 10 1000 Limitation of the starting signal (trip command is too long or the CB open signal received too late) REC79_MaxSt_TPar Start Signal Max Time msec 0 100000 10 1000 Max. delaying the start of the dead-time counter REC79_DtDel_TPar_ DeadTime Max Delay msec 0 100000 10 3000 Waiting time for circuit breaker ready to close signal REC79_CBTO_TPar_ CB Supervision Time msec 10 100000 10 1000 Waiting time for synchronous state signal REC79_SYN1_TPar_ SynCheck Max Time msec 500 100000 10 10000	Dead time setting for the	first reclosing cycle for eart	h fault				
REC79_EF DT2_TPar_	REC79_EFDT1_TPar_	1. Dead Time EF	msec	0	100000	10	1000
Dead time setting for the third reclosing cycle for earth fault REC79_EF DT3_TPar_ 3. Dead Time EF msec 10 100000 10 3000 Dead time setting for the fourth reclosing cycle for earth fault REC79_EF DT4_TPar_ 4. Dead Time EF msec 10 100000 10 4000 Reclaim time setting REC79_Rec_TPar_ Reclaim Time msec 100 100000 10 2000 Impulse duration setting for the CLOSE command REC79_Close_TPar_ Close Command Time msec 10 10000 10 100 Setting of the dynamic blocking time REC79_DynBlk_TPar_ Dynamic Blocking Time msec 10 100000 10 1500 Setting of the blocking time after manual close command REC79_MC_TPar_ Block after Man Close msec 0 100000 10 1000 Setting of the action time (max. allowable duration between protection start and trip) REC79_Act_TPar_ Action Time msec 0 20000 10 1000 Limitation of the starting signal (trip command is too long or the CB open signal received too late) REC79_MaxSt_TPar_ Start Signal Max Time msec 0 100000 10 1000 Max. delaying the start of the dead-time counter REC79_DtDel_TPar_ DeadTime Max Delay msec 0 100000 10 3000 Waiting time for circuit breaker ready to close signal REC79_CBTO_TPar_ CB Supervision Time msec 10 100000 10 1000 Waiting time for synchronous state signal REC79_SYN1_TPar_ SynCheck Max Time msec 500 100000 10 10000 Waiting time for synchronous switching signal	Dead time setting for the	second reclosing cycle for	earth fault				
REC79_EF DT3_TPar 3. Dead Time EF	REC79_ EF DT2_TPar_	2. Dead Time EF	msec	10	100000	10	2000
Dead time setting for the fourth reclosing cycle for earth fault REC79_EF DT4_TPar	Dead time setting for the	third reclosing cycle for ear	th fault				
REC79_EF DT4_TPar_				10	100000	10	3000
REC79_EF DT4_TPar_	Dead time setting for the	fourth reclosing cycle for ea	arth fault				•
Reclaim time setting REC79_Rec_TPar		4. Dead Time EF		10	100000	10	4000
REC79 Rec TPar			•	•	•		•
REC79_Close_TPar_ Close Command Time msec 10 10000 10 100 Setting of the dynamic blocking time REC79_DynBlk_TPar_ Dynamic Blocking Time msec 10 100000 10 1500 Setting of the blocking time after manual close command REC79_MC_TPar Block after Man Close msec 0 100000 10 1000 Setting of the action time (max. allowable duration between protection start and trip) REC79_Act_TPar_ Action Time msec 0 20000 10 1000 Limitation of the starting signal (trip command is too long or the CB open signal received too late) REC79_MaxSt_TPar_ Start Signal Max Time msec 0 10000 10 1000 Max. delaying the start of the dead-time counter REC79_DtDel_TPar_ DeadTime Max Delay msec 0 100000 10 3000 Waiting time for circuit breaker ready to close signal REC79_CBTO_TPar_ CB Supervision Time msec 10 100000 10 1000 Waiting time for synchronous state signal REC79_SYN1_TPar_ SynCheck Max Time msec 500 100000 10 10000 Waiting time for synchronous switching signal		Reclaim Time	msec	100	100000	10	2000
REC79_Close_TPar_ Close Command Time msec 10 10000 10 100 Setting of the dynamic blocking time REC79_DynBlk_TPar_ Dynamic Blocking Time msec 10 100000 10 1500 Setting of the blocking time after manual close command REC79_MC_TPar Block after Man Close msec 0 100000 10 1000 Setting of the action time (max. allowable duration between protection start and trip) REC79_Act_TPar_ Action Time msec 0 20000 10 1000 Limitation of the starting signal (trip command is too long or the CB open signal received too late) REC79_MaxSt_TPar_ Start Signal Max Time msec 0 10000 10 1000 Max. delaying the start of the dead-time counter REC79_DtDel_TPar_ DeadTime Max Delay msec 0 100000 10 3000 Waiting time for circuit breaker ready to close signal REC79_CBTO_TPar_ CB Supervision Time msec 10 100000 10 1000 Waiting time for synchronous state signal REC79_SYN1_TPar_ SynCheck Max Time msec 500 100000 10 10000 Waiting time for synchronous switching signal	Impulse duration setting f	or the CLOSE command	•	•	•		•
REC79_DynBlk_TPar_ Dynamic Blocking Time msec 10 100000 10 1500 Setting of the blocking time after manual close command REC79_MC_TPar_ Block after Man Close msec 0 100000 10 1000 Setting of the action time (max. allowable duration between protection start and trip) REC79_Act_TPar_ Action Time msec 0 20000 10 1000 Limitation of the starting signal (trip command is too long or the CB open signal received too late) REC79_MaxSt_TPar_ Start Signal Max Time msec 0 10000 10 1000 Max. delaying the start of the dead-time counter REC79_DtDel_TPar_ DeadTime Max Delay msec 0 100000 10 3000 Waiting time for circuit breaker ready to close signal REC79_CBTO_TPar_ CB Supervision Time msec 10 100000 10 1000 Waiting time for synchronous state signal REC79_SYN1_TPar_ SynCheck Max Time msec 500 100000 10 10000 Waiting time for synchronous switching signal			msec	10	10000	10	100
REC79_DynBlk_TPar_ Dynamic Blocking Time msec 10 100000 10 1500 Setting of the blocking time after manual close command REC79_MC_TPar_ Block after Man Close msec 0 100000 10 1000 Setting of the action time (max. allowable duration between protection start and trip) REC79_Act_TPar_ Action Time msec 0 20000 10 1000 Limitation of the starting signal (trip command is too long or the CB open signal received too late) REC79_MaxSt_TPar_ Start Signal Max Time msec 0 10000 10 1000 Max. delaying the start of the dead-time counter REC79_DtDel_TPar_ DeadTime Max Delay msec 0 100000 10 3000 Waiting time for circuit breaker ready to close signal REC79_CBTO_TPar_ CB Supervision Time msec 10 100000 10 1000 Waiting time for synchronous state signal REC79_SYN1_TPar_ SynCheck Max Time msec 500 100000 10 10000 Waiting time for synchronous switching signal	Setting of the dynamic blo	ocking time	•		•	•	•
REC79_MC_TPar	REC79_DynBlk_TPar_	Dynamic Blocking Time	msec	10	100000	10	1500
REC79_MC_TPar	Setting of the blocking tim	ne after manual close comn	nand	•			•
REC79_Act_TPar_	REC79_MC_TPar_	Block after Man Close	msec	0	100000	10	1000
Limitation of the starting signal (trip command is too long or the CB open signal received too late) REC79_MaxSt_TPar_	Setting of the action time	(max. allowable duration b	etween pr	otectio	n start and	trip)	
late) REC79_MaxSt_TPar_ Start Signal Max Time msec 0 10000 10 1000 Max. delaying the start of the dead-time counter REC79_DtDel_TPar_ DeadTime Max Delay msec 0 100000 10 3000 Waiting time for circuit breaker ready to close signal REC79_CBTO_TPar_ CB Supervision Time msec 10 100000 10 1000 Waiting time for synchronous state signal REC79_SYN1_TPar SynCheck Max Time msec 500 100000 10 10000 Waiting time for synchronous switching signal	REC79_Act_TPar_	Action Time	msec	0	20000	10	1000
REC79_MaxSt_TPar_ Start Signal Max Time msec 0 10000 10 1000 Max. delaying the start of the dead-time counter REC79_DtDel_TPar_ DeadTime Max Delay msec 0 100000 10 3000 Waiting time for circuit breaker ready to close signal REC79_CBTO_TPar_ CB Supervision Time msec 10 100000 10 1000 Waiting time for synchronous state signal REC79_SYN1_TPar SynCheck Max Time msec 500 100000 10 10000 Waiting time for synchronous switching signal	Limitation of the starting s	signal (trip command is too	long or th	e CB o	pen signal	receive	ed too
Max. delaying the start of the dead-time counter REC79_DtDel_TPar_	late)		Ū				
REC79_DtDel_TPar_ DeadTime Max Delay msec 0 100000 10 3000 Waiting time for circuit breaker ready to close signal REC79_CBTO_TPar_ CB Supervision Time msec 10 100000 10 1000 Waiting time for synchronous state signal REC79_SYN1_TPar_ SynCheck Max Time msec 500 100000 10 10000 Waiting time for synchronous switching signal	REC79_MaxSt_TPar_	Start Signal Max Time	msec	0	10000	10	1000
Waiting time for circuit breaker ready to close signal REC79_CBTO_TPar_ CB Supervision Time msec 10 100000 10 1000 Waiting time for synchronous state signal REC79_SYN1_TPar_ SynCheck Max Time msec 500 100000 10 10000 Waiting time for synchronous switching signal	Max. delaying the start of	the dead-time counter					
REC79_CBTO_TPar_CB Supervision Timemsec10100000101000Waiting time for synchronous state signalREC79_SYN1_TParSynCheck Max Timemsec5001000001010000Waiting time for synchronous switching signal	REC79_DtDel_TPar_	DeadTime Max Delay	msec	0	100000	10	3000
Waiting time for synchronous state signal REC79_SYN1_TPar	Waiting time for circuit bre	eaker ready to close signal					
REC79_SYN1_TPar_ SynCheck Max Time msec 500 100000 10 10000 Waiting time for synchronous switching signal	REC79_CBTO_TPar_	CB Supervision Time	msec	10	100000	10	1000
Waiting time for synchronous switching signal	Waiting time for synchron	ous state signal					
Waiting time for synchronous switching signal			msec	500	100000	10	10000
		ous switching signal					
			msec	500	100000	10	10000

Table 35 The timer parameters of the auto-reclosing protection function

Boolean parameters

Parameter name	Title	Default	Explanation
REC79_CBState_BPar_	CB State Monitoring	0	Enable CB state monitoring for "Not Ready" state
REC79_Acc1_BPar_	Accelerate 1.Trip	0	Accelerate trip command at starting cycle 1
REC79_Acc2_BPar_	Accelerate 2.Trip	0	Accelerate trip command at starting cycle 2
REC79_Acc3_BPar_	Accelerate 3.Trip	0	Accelerate trip command at starting cycle 3
REC79_Acc4_BPar_	Accelerate 4.Trip	0	Accelerate trip command at starting cycle 4
REC79_Acc5_BPar_	Accelerate FinTrip	0	Accelerate final trip command

Table 36 The boolean parameters of the auto-reclosing protection function

1.3.1.8 Over-frequency protection function (TOF81)

The deviation of the frequency from the rated system frequency indicates unbalance between the generated power and the load demand. If the available generation is large compared to the consumption by the load connected to the power system, then the system frequency is above the rated value. The over-frequency protection function is usually applied to decrease generation to control the system frequency.

Another possible application is the detection of unintended island operation of distributed generation and some consumers. In the island, there is low probability that the power generated is the same as consumption; accordingly, the detection of high frequency can be one of the indication of island operation.

Accurate frequency measurement is also the criterion for the synchro-check and synchroswitch functions.

The accurate frequency measurement is performed by measuring the time period between two rising edges at zero crossing of a voltage signal. For the acceptance of the measured frequency, at least four subsequent identical measurements are needed. Similarly, four invalid measurements are needed to reset the measured frequency to zero. The basic criterion is that the evaluated voltage should be above 30% of the rated voltage value.

The over-frequency protection function generates a start signal if at least five measured frequency values are above the preset level.

Time delay can also be set.

The function can be enabled/disabled by a parameter.

The over-frequency protection function has a binary input signal. The conditions of the input signal are defined by the user, applying the graphic equation editor. The signal can block the under-frequency protection function.

Accuracy

Technical data

Function

Operate range	40 - 70 Hz	30 mHz
Effective range	45 - 55 Hz / 55 - 65 Hz	2 mHz
Operate time		min 140 ms
Time delay	140 – 60000 ms	± 20 ms
Reset ratio		0.99

Range

Table 37 Technical data of the over-frequency protection function

Parameters

Enumerated parameter

Parameter name	Title	Selection range	Default		
Selection of the operating mode					
TOF81_Oper_EPar_	Operation	Off,On	On		

Table 38 The enumerated parameter of the over-frequency protection function

Boolean parameter

Parameter name	Title	Default
Enabling start signal only:		
TOF81_StOnly_BPar_	Start Signal Only	FALSE

Table 39 The boolean parameter of the over-frequency protection function

Float point parameter

Parameter name	Title	Unit	Min	Max	Step	Default
Setting value of the comparison						
TOF81_St_FPar_	Start Frequency	Hz	40	60	0.01	51

Table 40 The float point parameter of the over-frequency protection function

Timer parameter

Parameter name	Title	Unit	Min	Max	Step	Default
Time delay						
TOF81_Del_TPar_	Time Delay	msec	100	60000	1	200

Table 41 The timer parameter of the over-frequency protection function

1.3.1.9 Underfrequency protection function (TUF81)

The deviation of the frequency from the rated system frequency indicates unbalance between the generated power and the load demand. If the available generation is small compared to the consumption by the load connected to the power system, then the system frequency is below the rated value. The under-frequency protection function is usually applied to increase generation or for load shedding to control the system frequency.

Another possible application is the detection of unintended island operation of distributed generation and some consumers. In the island, there is low probability that the power generated is the same as consumption; accordingly, the detection of low frequency can be one of the indications of island operation.

Accurate frequency measurement is also the criterion for the synchro-check and synchroswitch functions.

The accurate frequency measurement is performed by measuring the time period between two rising edges at zero crossing of a voltage signal. For the acceptance of the measured frequency, at least four subsequent identical measurements are needed. Similarly, four invalid measurements are needed to reset the measured frequency to zero. The basic criterion is that the evaluated voltage should be above 30% of the rated voltage value.

The under-frequency protection function generates a start signal if at least five measured frequency values are below the setting value.

Time delay can also be set.

The function can be enabled/disabled by a parameter.

The under-frequency protection function has a binary input signal. The conditions of the input signal are defined by the user, applying the graphic equation editor. The signal can block the under-frequency protection function.

Technical data

Function	Range	Accuracy
Operate range	40 - 70 Hz	30 mHz
Effective range	45 - 55 Hz / 55 - 65 Hz	2 mHz
Operate time		min 140 ms
Time delay	140 – 60000 ms	± 20 ms
Reset ratio		0,99

Table 42 Technical data of the under-frequency protection function

Parameters

Enumerated parameter

Parameter name	Title	Selection range	Default		
Selection of the operating mode					
TUF81_Oper_EPar_	Operation	Off, On	On		

Table 43 The enumerated parameter of the under-frequency protection function

Boolean parameter

Parameter name	Title	Default
Enabling start signal only:		
TUF81_StOnly_BPar_	Start Signal Only	FALSE

Table 44 The boolean parameter of the under-frequency protection function

Float point parameter

Parameter name	Title	Unit	Min	Max	Digits	Default
Preset value of the comparison						
TUF81_St_FPar_	Start Frequency	Hz	40	60	0.01	49

Table 45 The float point parameter of the under-frequency protection function

Timer parameter

Parameter name	Title	Unit	Min	Max	Step	Default
Time delay						
TUF81_Del_TPar_	Time Delay	ms	100	60000	1	200

Table 46 The timer parameter of the under-frequency protection function

1.3.1.10 Rate of change of frequency protection function (FRC81)

The deviation of the frequency from the rated system frequency indicates unbalance between the generated power and the load demand. If the available generation is large compared to the consumption by the load connected to the power system, then the system frequency is above the rated value, and if it is small, the frequency is below the rated value. If the unbalance is large, then the frequency changes rapidly. The rate of change of frequency protection function is usually applied to reset the balance between generation and consumption to control the system frequency.

Another possible application is the detection of unintended island operation of distributed generation and some consumers. In the island, there is low probability that the power generated is the same as consumption; accordingly, the detection of a high rate of change of frequency can be an indication of island operation.

Accurate frequency measurement is also the criterion for the synchro-switch function.

The source for the rate of change of frequency calculation is an accurate frequency measurement.

In some applications, the frequency is measured based on the weighted sum of the phase voltages.

The accurate frequency measurement is performed by measuring the time period between two rising edges at zero crossing of a voltage signal. For the acceptance of the measured frequency, at least four subsequent identical measurements are needed. Similarly, four invalid measurements are needed to reset the measured frequency to zero. The basic criterion is that the evaluated voltage should be above 30% of the rated voltage value.

The rate of change of frequency protection function generates a start signal if the df/dt value is above the setting value. The rate of change of frequency is calculated as the difference of the frequency at the present sampling and at three periods earlier.

Time delay can also be set.

The function can be enabled/disabled by a parameter.

The rate of change of frequency protection function has a binary input signal. The conditions of the input signal are defined by the user, applying the graphic equation editor. The signal can block the rate of change of frequency protection function.

Technical data

Function	Effective range	Accuracy
Operating range	-50.05 and +0.05 - +5 Hz/sec	
Pick-up accuracy		±20 mHz/sec
Operate time	min 140 ms	
Time delay	140 – 60000 ms	<u>+</u> 20 ms

Table 47 Technical data of the rate of change of frequency protection function

Parameters

Enumerated parameter

Parameter name	Title	Selection range	Default	
Selection of the operating	mode			
FRC81_Oper_EPar_	Operation	Off,On	On	

Table 48 The enumerated parameter of the rate of change of frequency protection function

Boolean parameter

Boolean parameter				
Parameter name	Title	Default		
Enabling start signal only:				
FRC81 StOnly BPar	Start Signal Only	True		

Table 49 The boolean parameter of the rate of change of frequency protection function

Float point parameter

Parameter name	Title	Unit	Min	Max	Step	Default
Setting value of the compar	rison					
FRC81_St_FPar_	Start df/dt	Hz/sec	-5	5	0.01	0.5

Table 50 The float point parameter of the rate of change of frequency protection function

Timer parameters

Parameter name	Title	Unit	Min	Max	Step	Default
Time delay						
FRC81_Del_TPar_	Time Delay	msec	100	60000	1	200

Table 51 The timer parameter of the rate of change of frequency protection function

1.3.1.11 Automatic tap-changer controller function (ATCC)

One criterion for power quality is to keep the voltage of selected points of the networks within the prescribed limits. The most common mode of voltage regulation is the application of transformers with on-load tap changers. When the transformer is connected to different taps, its turns ratio changes and supposing constant primary voltage, the secondary voltage can be increased or decreased as required.

Voltage control can take the actual load state of the transformer and the network into consideration. As a result, the voltage of a defined remote point of the network is controlled assuring that neither consumers near the busbar nor consumers at the far ends of the network get voltages out of the required range.

The voltage control function can be performed automatically or, in manual mode of operation, the personnel of the substation can set the network voltage according to special requirements.

The automatic tap changer controller function can be applied to perform this task.

The automatic tap changer controller function receives the following analog inputs:

UL1L2	Line-to-line voltage of the controlled secondary side of the transformer
IL1L2	Difference of the selected line currents of the secondary side of the
	transformer for voltage drop compensation
IHV	Maximum of the phase currents of the primary side of the transformer for
	limitation purposes

The parameter "U Correction" permits fine tuning of the measured voltage.

The function performs the following internal checks before control operation (see Figure below):

- If the voltage of the controlled side UL1L2 is above the value set by the parameter "U High Limit", then control to increase the voltage is disabled.
- If the voltage of the controlled side UL1L2 is below the value set by the parameter "U Low Limit", then control to decrease the voltage is disabled.
- If the voltage of the controlled side UL1L2 is below the value set by the parameter "U Low Block", then the transformer is considered to be de-energized and automatic control is completely disabled.
- If the current of the supply side IHV is above the limit set by the parameter "I Overload", then both automatic and manual controls are completely disabled. This is to protect the switches inside the tap changer.

Automatic control mode

Voltage compensation in automatic control mode

The function gets the Fourier components of the busbar voltage and those of the current:

- UL1L2Re and UL1L2Im
- IL1L2Re and IL1L2Im

In automatic control mode the voltage of the controlled side *UL1L2* is compensated by the current of the controlled side *IL1L2*. This means that the voltage of the "load center" of the network is controlled to be constant, in fact within a narrow range. This assures that neither the voltage near to the busbar is too high, nor the voltage at far-away points of the network is too low. The voltage of the "load center", i.e. the controlled voltage is calculated as:

$$|Ucontrol| = |Ubus - Udrop|$$

There are two compensation modes to be selected: "AbsoluteComp" and "ComplexComp".

• If the parameter "Compensation" is set to "AbsoluteComp", the calculation method is as follows:

In this simplified method the vector positions are not considered correctly, the formula above is approximated with the magnitudes only:

$$|Ucontrol| = |Ubus - Udrop| \approx |Ubus| - |Udrop| \approx |Ubus| - |I| * (R)CompoundFactor$$

where

(R) Compound Factor

is a parameter value.

If the current is above the value defined by the parameter "I Comp Limit", then in the formulas above this preset value is considered instead of the higher values measured.

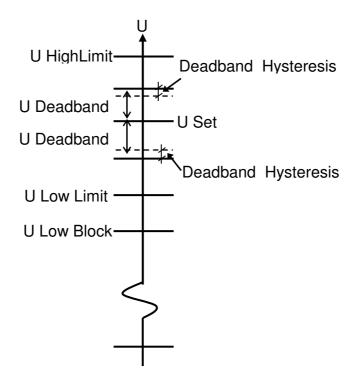
The method is based on the experiences of the network operator. Information is needed: how much is the voltage drop between the busbar and the "load center" if the load of the network is the rated load. The parameter "(R) Compound Factor" means in this case the voltage drop in percent.

If the parameter "Compensation" is set to "ComplexComp", the calculation method
is as follows:

In this simplified method the vector positions are partly considered. In the formula above the voltage drop is approximated with the component of the voltage drop, the direction of which is the same as the direction of the bus voltage vector. (This is "length component" of the voltage drop; the "perpendicular component" of the voltage drop is neglected.)

$$|Ucontrol| = |Ubus$$
 $-[IL1L2_{Re} * (R)CompoundFactor - IL1L2_{Im} * XCompoundFactor]|$ where $(R)CompoundFactor$ is a parameter value

X Compound Factor is a parameter value is a parameter value


The voltage of the "load center" of the network is controlled to be within a narrow range. This assures that neither the voltage near to the busbar is too high, nor the voltage at far-away points of the network is too low.

The method is based on the estimated complex impedance between the busbar and the "load center".

The parameter "(R) Compound Factor" means in this case the voltage drop in percent, caused by the real component of the rated current.

The parameter "X Compound Factor" means in this case the voltage drop in percent, caused by the imaginary component of the rated current.

NOTE: if the active power flows from the network to the busbar then in "AbsoluteComp" mode no compounding is performed.

Voltage checking in automatic control mode

In automatic control mode the calculated | *Ucontrol* | voltage is checked to see if it is outside the limits. The limits are defined by parameter values:

U Set U Deadband Deadband Hysteresis is the setting value defining the centre of the permitted range is the width of the permitted range in both + and - directions is the hysteresis decreasing the permitted range of the "U Deadband" after the generation of the control command.

If the calculated | *Ucontrol* | voltage is outside the limits, then timers are started.

In an emergency state of the network, when the network elements are overloaded, the Uset value can be driven to two lower values defined by the parameters "Voltage Reduction 1" and "Voltage Reduction 2". "U Set" is decreased by the parameter values if the binary inputs "VRed 1" or "VRed 2" enter into active state. These inputs must be programmed graphically by the user.

Time delay in automatic control mode

In automatic control mode the first and every subsequent control command is processed separately.

For the first control command:

The voltage difference is calculated:

Udiff= |Ucontrol- Uset|

If this difference is above the U Deadband value, and depending on the setting of parameter "T1 Delay Type", three different timing modes can be selected:

- "Definite" this definite time delay is defined by parameter T1
- "Inverse" standard IDMT characteristic defined by the parameters:
 - o T1 maximum delay defined by the parameter
 - o U Deadband is the width of the permitted range in both + and directions
 - o Min Delay minimum time delay

$$Tdelay = \frac{T\mathbf{1}}{\left(\frac{Udiff}{Udendhand}\right)}, but minimum Min Delay$$

"2powerN"

$$Tdelay = T1 * 2^{\left(1 - \frac{Udiff}{Udeadband}\right)}$$

The binary parameters "Fast Lower Enable" and/or "Fast Higher Enable" enable fast command generation if the voltage is above the parameter value "U High Limit" or below the "U Low Limit". In this case, the time delay is a definite time delay defined by parameter "T2".

For subsequent control commands:

In this case, the time delay is always a definite time delay defined by parameter "T2" if the subsequent command is generated within the "Reclaim time" defined by a parameter.

The automatic control mode can be blocked by a binary signal received via binary input "AutoBlk" and generates a binary output signal "AutoBlocked (ext)"

Manual control mode

In manual mode, the automatic control is blocked. The manual mode can be "Local" or "Remote". For this mode, the input "Manual" needs to be in active state (as programmed by the user).

In the local mode, the input "Local" needs to be in active state. The binary inputs "ManHigher" or "ManLower" must be programmed graphically by the user.

In the remote mode, the input "Remote" needs to be in active state as programmed by the user. In this case manual commands are received via the communication interface.

Command generation and tap changer supervision

The software module "CMD&TC SUPERV" is responsible for the generation of the "HigherCmd" and "LowerCmd" command pulses, the duration of which is defined by the parameter "Pulse Duration". This is valid both for manual and automatic operation.

The tap changer supervision function receives the information about the tap changer position in six bits of the binary inputs "Bit0 to Bit5". The value is decoded according to the enumerated parameter "CodeType", the values of which can be: Binary, BCD or Gray. During switchover, for the transient time defined by the parameter "Position Filter", the position is not evaluated.

The parameters "Min Position" and "Max Position" define the upper and lower limits. In the upper position, no further increasing command is generated and the output "Max Pos Reached" becomes active. Similarly, in the lower position, no further decreasing command is generated and the output "Min Pos Reached" becomes active.

The function also supervises the operation of the tap changer. Depending on the setting of parameter "TC Supervision", three different modes can be selected:

- TCDrive the supervision is based on the input "TCRun". In this case, after command generation the drive is expected to start operation within one quarter of the value defined by the parameter "Max Operating Time" and it is expected to perform the command within "Max Operating Time"
- Position the supervision is based on the tap changer position in six bits of the binary inputs "Bit0 to Bit5". It is checked if the tap position is incremented in case of a voltage increase, or the tap position is decremented in case of a voltage decrease, within the "Max Operating Time".
- Both in this mode the previous two modes are combined.

In case of an error detected in the operation of the tap changer, the "Locked" input becomes active and no further commands are performed. To enable further operation, the input "Reset" must be programmed for an active state by the user.

Technical data

Function	Range	Accuracy
Voltage measurement	50 % < U < 130 %	<1%
Definite time delay		<2% or ±20 ms, whichever is greater
Inverse and "2powerN" time delay	12 % < U < 25%	<5%
	25 % < U < 50%	<2% or ±20 ms, whichever is greater

Table 52 Technical data of the automatic tap-changer controller function

Parameters

Enumerated parameters

Enamerated paramet						
Parameter name	Title	Selection range	Default			
Control model, according to	to IEC 61850					
ATCC_ctlMod_EPar_	ControlModel	Direct normal, Direct enhanced,	Direct normal			
		SBO enhanced				
Select before operate class, according to IEC 61850						
ATCC_sboClass_EPar_	sboClass	Operate-once, Operate-many	Operate-once			
Parameter for general blocking of the function						
ATCC_Oper_EPar_	Operation	Off,On Off				
Parameter for time delay r	node selection					
ATCC_T1Type_EPar_	T1 Delay Type	Definite, Inverse, 2powerN	Definite			
Selection for compensatio	n mode					
ATCC_Comp_EPar_	Compensation	Off, AbsoluteComp, ComplexComp	Off			
Tap changed supervision	mode selection					
ATCC_TCSuper_EPar_	TC Supervision	Off, TCDrive, Position, Both	Off			
Decoding of the position in	ndicator bits					
ATCC_CodeType_EPar	CodeType	Binary, BCD, Gray	Binary			

Table 53 The enumerated parameters of the automatic tap-changer controller function

Boolean parameters

Parameter name	Title	Explanation	Default
ATCC_FastHigh_BPar_	Fast Higher Enable	Enabling fast higher control command	0
ATCC FastLow BPar	Fast Lower Enable	Enabling fast lower control command	0

Table 54 The boolean parameters of the automatic tap-changer controller function

Integer parameters

Parameter name	Title	Unit	Min	Max	Step	Default
Code value of the minimum posit	ion					
ATCC_MinPos_lpar_	Min Position		1	32	1	1
Code value of the maximum position						
ATCC_MaxPos_lpar_	Max Position		1	32	1	32

Table 55 The integer parameters of the automatic tap-changer controller function

Timer parameters

Timor paramotoro						
Parameter name	Title	Unit	Min	Max	Step	Default
Time limit for tap-change operation						
ATCC_TimOut_TPar_	Max Operating Time	msec	1000	30000	1	5000
Command impulse duration						
ATCC_Pulse_TPar_	Pulse Duration	msec	100	10000	1	1000
Time overbridging the transient	state of the tap changer	status sigi	nals			
ATCC_MidPos_TPar_	Position Filter	msec	1000	30000	1	3000
Select before operate timeout, according to IEC 61850						
ATCC_SBOTimeout_TPar_	SBO Timeout	msec	1000	20000	1	5000

Table 56 The timer parameters of the automatic tap-changer controller function

Float point parameters

Perometer name	Title	Unit	Min	Mov	Digita	Dofoult
Parameter name		Unit	IVIIII	Max	Digits	Default
Factor for fine tuning the me		I	0.050	4.050	I 0	1 000
ATCC_Ubias_FPar_	U Correction	- ,	0.950	1.050	3	1.000
Set-point for voltage regulation						T
ATCC_USet_FPar_	U Set	%	80.0	115.0	1	100.0
Dead band for voltage regula			ı	ı		
ATCC_UDead_FPar_	U Deadband	%	0.5	9.0	1	3.0
Hysteresis value for the dead						
ATCC_DeadHyst_FPar_	Deadband Hysteresis	%	60	90	0	85
Parameter for the current co	mpensation:					
ATCC_URinc_FPar_	(R) Compound Factor	%	0.0	15.0	1	5.0
Parameter for the current co	mpensation:					
ATCC_UXinc_FPar_	X Compound Factor	%	0.0	15.0	1	5.0
Reduced set-point 1 for volta	age regulation (priority), re	elated to t	the rated v	oltage:		
ATCC_VRed1_FPar_	Voltage Reduction 1	%	0.0	10.0	1	5.0
Reduced set-point 2 for volta	ge regulation, related to	the rated	voltage:			
ATCC_VRed2_FPar_	Voltage Reduction 2	%	0.0	10.0	1	5.0
Maximum current value to be	considered in current co	mpensat	ion formu	las:		
ATCC_ICompLim_FPar_	I Comp Limit	%	0.00	150	0	1
Current upper limit to disable	all operation:					
ATCC_IHVOC_FPar_	I Overload	%	50	150	0	100
Voltage upper limit to disable	e step up:.					
ATCC_UHigh_FPar_	U High Limit	%	90.0	120.0	1	110.0
Voltage lower limit to disable	step down:					
ATCC_ULow_FPar_	U Low Limit	%	70.0	110.0	1	90.0
Voltage lower limit to disable	all operation:	•	•	•	•	
	U Low Block	%	50.0	100.0	1	70.0
Time delay for the first contro	ol command generation:				•	
ATCC_T1_FPar_	T1	sec	1.0	600.0	1	10.0
Definite time delay for subse	quent control command o	eneratio	n or fast o	peration (if it is ena	bled):
ATCC T2 FPar	T2	sec	1.0	100.0	1	10.0
In case of dependent time ch	naracteristics, this is the n	ninimum	time delav	,	•	•
	Min Delay	sec	1.0	100.0	1	10.0
After a control command, if t					then the o	
is generated after T2 time de		J	3.13.130.1	,		
	Reclaim Time	sec	1.0	100.0	1	10.0
# 11 57 #1 C					11 C	

Table 57 The float point parameters of the automatic tap-changer controller function

1.3.1.12 Breaker failure protection function (BRF50)

After a protection function generates a trip command, it is expected that the circuit breaker opens and the fault current drops below the pre-defined normal level.

If not, then an additional trip command must be generated for all backup circuit breakers to clear the fault. At the same time, if required, a repeated trip command can be generated to the circuit breakers which are a priori expected to open.

The breaker failure protection function can be applied to perform this task.

The starting signal of the breaker failure protection function is usually the trip command of any other protection function assigned to the protected object. The user has the task to define these starting signals using the graphic equation editor, or if the operation of the individual phases is needed, then the start signals for the phases individually.

Two dedicated timers start at the rising edge of the start signals at the same time, one for the backup trip command and one for the repeated trip command, separately for operation in the individual phases. During the running time of the timers the function optionally monitors the currents, the closed state of the circuit breakers or both, according to the user's choice. The selection is made using an enumerated parameter.

If current supervision is selected by the user then the current limit values must be set correctly. The binary inputs indicating the status of the circuit breaker poles have no meaning.

If contact supervision is selected by the user then the current limit values have no meaning. The binary inputs indicating the status of the circuit breaker poles must be programmed correctly using the graphic equation editor.

If the parameter selection is "Current/Contact", the current parameters and the status signals must be set correctly. The breaker failure protection function resets only if all conditions for faultless state are fulfilled.

If at the end of the running time of the backup timer the currents do not drop below the predefined level, and/or the monitored circuit breaker is still in closed position, then a backup trip command is generated.

If repeated trip command is to be generated for the circuit breakers that are expected to open, then the enumerated parameter Retrip must be set to "On". In this case, at the end of the retrip timer(s) a repeated trip command is also generated in the phase(s) where the retrip timer(s) run off.

The pulse duration of the trip command is not shorter than the time defined by setting the parameter Pulse length.

The breaker failure protection function can be disabled by setting the enabling parameter to "Off".

Dynamic blocking (inhibition) is possible using the binary input Block. The conditions are to be programmed by the user, using the graphic equation editor.

Technical data

Function	Effective range	Accuracy
Current accuracy		<2 %
Retrip time	approx. 15 ms	
BF time accuracy		<u>+</u> 5 ms
Current reset time	20 ms	

Table 58 Technical data of the breaker failure protection function

Parameters

Enumerated parameters

Parameter name	Title	Selection range	Default		
Selection of the operating	mode				
BRF50_Oper_EPar_	Operation	Off, Current, Contact, Current/Contact	Current		
Switching on or off of the repeated trip command					
BRF50_ReTr_EPar_	Retrip	Off, On	On		

Table 59 The enumerated parameters of the breaker failure protection function

Integer parameters

mitogor paramotoro						
Parameter name	Title	Unit	Min	Max	Step	Default
Phase current setting						
BRF50_StCurrPh_IPar_	Start Ph Current	%	20	200	1	30
Neutral current setting						
BRF50_StCurrN_IPar_	Start Res Current	%	10	200	1	20

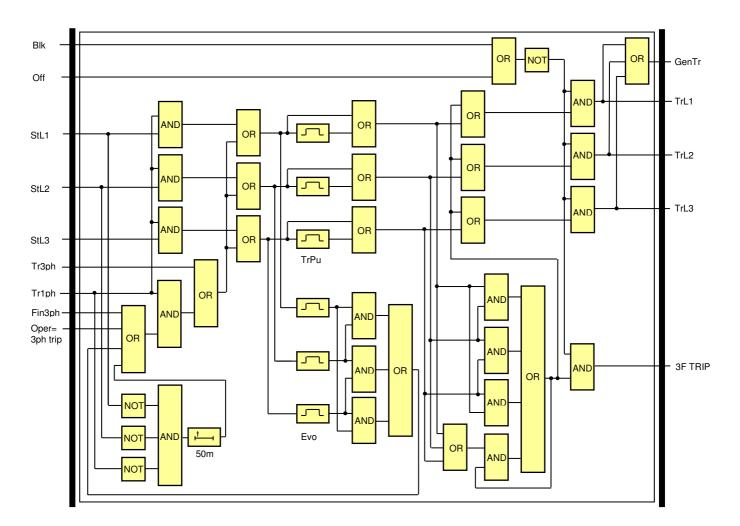
Table 60 The integer parameters of the breaker failure protection function

Timer parameters

Parameter name	Title	Unit	Min	Max	Step	Default
Time delay for repeated trip command generation						
BRF50_TrDel_TPar_	Retrip Time Delay	msec	0	10000	1	200
Time delay for trip comman	Time delay for trip command generation for the backup circuit breaker(s)					
BRF50_BUDel_TPar_	Backup Time Delay	msec	60	10000	1	300
Trip command impulse duration						
BRF50_Pulse_TPar_	Pulse Duration	msec	0	60000	1	100

Table 61 The timer parameters of the breaker failure protection function

1.3.1.13 Phase-selective trip logic (TRC94_PhS)


The phase-selective trip logic function operates according to the functionality required by the IEC 61850 standard for the "Trip logic logical node".

The function receives the trip requirements of the protective functions implemented in the device and combines the parameters and the binary signals into the outputs of the device.

The trip requirements are programmed by the user, using the graphic equation editor. The decision logic has the following aims:

- define a minimal impulse duration even if the protection functions detect a very short time fault,
- in case of phase-to-phase faults, involve the third phase in the trip command,
- fulfill the requirements of the automatic reclosing function to generate a three-phase trip command even in case of single-phase faults,
- in case of an evolving fault, during the evolving fault waiting time include all three phases into the trip command.

The decision logic module combines the status signals and enumerated parameters to generate the trip commands on the output module of the device.

Technical data

Function	Accuracy
Timer accuracy	±5% or ±15 ms, whichever is greater

Table 62 Technical data of the phase-selective trip logic function

Parameters

Enumerated parameter

Parameter name	Title	Selection range Defa				
Selection of the operating mode						
TRC94_Oper_EPar_	Operation	Off, 3ph trip, 1ph/3ph trip	3ph trip			

Tables 63 The enumerated parameter of the phase-selective trip logic function

Timer parameter

Parameter name	Title	Unit	Min	Max	Step	Default
Minimum duration of the generated impulse						
TRC94_TrPu_TPar_	Min Pulse Duration	msec	50	60000	1	150
Waiting time for evolving fault						
TRC94_Evo_TPar_	Evolving Fault Time	msec	50	60000	1	1000

Table 64 Timer parameter of the phase-selective trip logic function

1.3.1.14 Dead line detection function (DLD)

The "Dead Line Detection" (DLD) function generates a signal indicating the dead or live state of the line. Additional signals are generated to indicate if the phase voltages and phase currents are above the pre-defined limits.

The task of the "Dead Line Detection" (DLD) function is to decide the Dead line/Live line state.

<u>Criteria of "Dead line" state</u>: all three phase voltages are below the voltage setting value AND all three currents are below the current setting value.

<u>Criteria of "Live line" state</u>: all three phase voltages are above the voltage setting value.

The details are described in the document *Dead line detection protection function block description.*

Technical data

Function	Value	Accuracy
Pick-up voltage		1%
Operation time	<20ms	
Reset ratio	0.95	

Table 65 Technical data of the dead line detection function

Parameters

Integer parameters

Parameter name	Title	Unit	Min	Max	Step	Default
Integer parameters of the dead line detection function						
DLD_ULev_IPar_	Min. Operate Voltage	%	10	100	1	60
DLD ILev IPar	Min. Operate Current	%	2	100	1	10

Table 66 The integer parameters of the dead line detection function

1.3.1.15 Voltage transformer supervision function (VTS60)

The voltage transformer supervision function generates a signal to indicate an error in the voltage transformer secondary circuit. This signal can serve, for example, as a warning, indicating disturbances in the measurement, or it can disable the operation of the distance protection function if appropriate measured voltage signals are not available for a distance decision.

The voltage transformer supervision function is designed to detect faulty asymmetrical states of the voltage transformer circuit caused, for example, by a broken conductor in the secondary circuit.

(Another method for detecting voltage disturbances is the supervision of the auxiliary contacts of the miniature circuit breakers in the voltage transformer secondary circuits. This function is not described here.)

The user has to generate graphic equations for the application of the signal of this voltage transformer supervision function.

This function is interconnected with the "dead line detection function". Although the dead line detection function is described fully in a separate document, the explanation necessary to understand the operation of the VT supervision function is repeated also in this document.

The voltage transformer supervision function can be used in three different modes of application:

Zero sequence detection (for typical applications in systems with grounded neutral): "VT failure" signal is generated if the residual voltage (3Uo) is above the preset voltage value AND the residual current (3Io) is below the preset current value.

<u>Negative sequence detection</u> (for typical applications in systems with isolated or resonant grounded (Petersen) neutral): "VT failure" signal is generated if the negative sequence voltage component (U2) is above the preset voltage value AND the negative sequence current component (I2) is below the preset current value.

<u>Special application</u>: "VT failure" signal is generated if the residual voltage (3Uo) is above the preset voltage value AND the residual current (3Io) AND the negative sequence current component (I2) are below the preset current values.

The voltage transformer supervision function can be activated if "Live line" status is detected for at least 200 ms. This delay avoids mal-operation at line energizing if the poles of the circuit breaker make contact with a time delay. The function is set to be inactive if "Dead line" status is detected.

If the conditions specified by the selected mode of operation are fulfilled (for at least 4 milliseconds) then the voltage transformer supervision function is activated and the operation signal is generated. (When evaluating this time delay, the natural operating time of the applied Fourier algorithm must also be considered.)

NOTE: For the operation of the voltage transformer supervision function the "Dead line detection function" must be operable as well: it must be enabled by binary parameter setting, and its blocking signal may not be active.

If, in the active state, the conditions for operation are no longer fulfilled, the resetting of the function depends on the mode of operation of the primary circuit:

- If the "Live line" state is valid, then the function resets after approx. 200 ms of time delay. (When evaluating this time delay, the natural operating time of the applied Fourier algorithm must also be considered.)
- If the "Dead line" state is started and the "VTS Failure" signal has been continuous for at least 100 ms, then the "VTS failure" signal does not reset; it is generated continuously even when the line is in a disconnected state. Thus, the "VTS Failure" signal remains active at reclosing.
- If the "Dead line" state is started and the "VTS Failure" signal has not been continuous for at least 100 ms, then the "VTS failure" signal resets.

Technical data

Function	Value	Accuracy
Pick-up voltage		
lo=0A		<1%
I2=0A		<1%
Operation time	<20ms	
Reset ratio	0.95	

Table 67 Technical data of the voltage transformer supervision function

Parameters

Integer parameters

Parameter name	Title	Unit	Min	Max	Step	Default
Integer parameters of the dead line detection function						
DLD_ULev_IPar_	Min Operate Voltage	%	10	100	1	60
DLD_ILev_IPar_	Min Operate Current	%	2	100	1	10
Starting voltage and curre	ent parameter for residual	and nega	tive seq	uence c	letectior	1:
VTS_Uo_IPar_	Start URes	%	5	50	1	30
VTS_lo_IPar_	Start IRes	%	10	50	1	10
VTS_Uneg_IPar_	Start UNeg	%	5	50	1	10
VTS_Ineg_IPar_	Start INeg	%	10	50	1	10

Table 68 The integer parameters of the voltage transformer supervision function

Enumerated parameter

=::a:::o:a:oa pa:a:::o:o:			
Parameter name	Title	Selection range	Default
Parameter for type select	ion		
VTS Oper EPar	Operation	Off, Zero sequence, Neg. sequence,	Zero
VIO_OPCI_LI al_	Operation	Special	sequence

Table 69 The enumerated parameter of the voltage transformer supervision function

1.3.1.16 Current unbalance function (VCB60)

The current unbalance protection function (VCB60) can be applied to detect unexpected asymmetry in current measurement.

The applied method selects maximum and minimum phase currents (RMS value of the fundamental Fourier components). If the difference between them is above the setting limit, the function generates a start signal. It is a necessary precondition of start signal generation that the maximum of the currents be above 10 % of the rated current and below 150% of the rated current.

The Fourier calculation modules calculate the RMS value of the basic Fourier current components of the phase currents individually. They are not part of the VCB60 function; they belong to the preparatory phase.

The analog signal processing module processes the RMS value of the basic Fourier current components of the phase currents to prepare the signals for the decision. It calculates the maximum and the minimum value of the RMS values and the difference between the maximum and minimum of the RMS values of the fundamental Fourier components of the phase currents as a percentage of the maximum of these values (ΔI). If the maximum of the currents is above 10 % of the rated current and below 150% of the rated current and the ΔI value is above the limit defined by the preset parameter (Start Current Diff) an output is generated to the decision module.

The decision logic module combines the status signals to generate the starting signal and the trip command of the function.

The trip command is generated after the defined time delay if trip command is enabled by the Boolean parameter setting.

The function can be disabled by parameter setting, and by an input signal programmed by the user with the graphic programming tool.

Technical data

. common data			
Function	Value	Accuracy	
Pick-up starting accuracy at In		< 2 %	
Reset ratio	0.95		
Operate time	70 ms		

Table 70 Technical data of the current unbalance function

Parameters

Enumerated parameter

Parameter name	Title	Selection range	Default	
Selection of the operating mode				
VCB60_Oper_EPar_	Operation	Off, On	On	

Table 71 The enumerated parameter of the current unbalance function

Boolean parameter

Parameter name	meter name Title Explanation		Default		
Selection for trip command					
VCB60_StOnly_BPar_	Start Signal Only	0 to generate trip command	0		

Table 72 The boolean parameter of the current unbalance function

Integer parameter

Parameter name	Title	Unit	Min	Max	Step	Default
Phase difference current setting						
VCB60_StCurr_IPar_	Start Current Diff	%	10	90	1	50

Table 73 The integer parameter of the current unbalance function

Timer parameter

Parameter name	Title	Unit	Min	Max	Step	Default
Time delay						
VCB60_Del_TPar_	Time Delay	msec	100	60000	100	1000

Table 74 The timer parameter of the current unbalance function

1.3.2 Control functions

1.3.2.1 Circuit breaker control function block (CB1Pol)

The Circuit breaker control function block can be used to integrate the circuit breaker control of the EuroProt+ device into the station control system and to apply active scheme screens of the local LCD of the device.

The Circuit breaker control function block receives remote commands from the SCADA system and local commands from the local LCD of the device, performs the prescribed checking and transmits the commands to the circuit breaker. It processes the status signals received from the circuit breaker and offers them to the status display of the local LCD and to the SCADA system.

Main features:

- Local (LCD of the device) and Remote (SCADA) operation modes can be enabled or disabled individually.
- The signals and commands of the synchro check / synchro switch function block can be integrated into the operation of the function block.
- Interlocking functions can be programmed by the user applying the inputs "EnaOff" (enabled trip command) and "EnaOn" (enabled close command), using the graphic equation editor.
- Programmed conditions can be used to temporarily disable the operation of the function block using the graphic equation editor.
- The function block supports the control models prescribed by the IEC 61850 standard.
- All necessary timing tasks are performed within the function block:
 - Time limitation to execute a command
 - Command pulse duration
 - Filtering the intermediate state of the circuit breaker
 - Checking the synchro check and synchro switch times
 - Controlling the individual steps of the manual commands
- Sending trip and close commands to the circuit breaker (to be combined with the trip
 commands of the protection functions and with the close command of the automatic
 reclosing function; the protection functions and the automatic reclosing function
 directly gives commands to the CB). The combination is made graphically using the
 graphic equation editor
- Operation counter
- Event reporting

The Circuit breaker control function block has binary input signals. The conditions are defined by the user applying the graphic equation editor. The signals of the circuit breaker control are seen in the binary input status list.

Technical data

Function	Accuracy
Operate time accuracy	±5% or ±15 ms, whichever is greater

Table 75 Technical data of the circuit breaker control function

Parameters

Enumerated parameter

Parameter name	Title	e Selection range	
The control model of the	circuit breaker node according to the IEC 61850 standard		
CB1Pol_ctlMod_EPar_	ControlModel*	Direct normal, Direct enhanced, SBO enhanced	Direct normal

*ControlModel

• Direct normal: only command transmission

• Direct enhanced: command transmission with status check and command supervision

• SBO enhanced: Select Before Operate mode with status check and command supervision

Table 76 Enumerated parameter of the circuit breaker control function

Boolean parameter

Boolean parameter	Title	Explanation	
CB1Pol_DisOverR_BPar_	Forced check	If true, then the check function cannot be neglected by the check attribute defined by the IEC 61850 standard	

Table 77 Boolean parameter of the circuit breaker control function

Timer parameters

Parameter name	Title	Unit	Min	Max	Step	Default
Timeout for signaling failed operation						
CB1Pol_TimOut_TPar_	Max.Operating time	msec	10	1000	1	200
Duration of the generated Or	and Off impulse					
CB1Pol_Pulse_TPar_,	Pulse length	msec	50	500	1	100
Waiting time, at expiry interm	ediate state of the CB	is reported				
CB1Pol_MidPos_TPar_	Max.Intermediate time	msec	20	30000	1	100
	Length of the time period to wait for the conditions of the synchron state. After expiry of this time, the synchro switch procedure is initiated (see synchro check/ synchro switch function block description)					
CB1Pol_SynTimOut_TPar_	Max.SynChk time	msec	10	5000	1	1000
Length of the time period to wait for the synchro switch impulse (see synchro check/ synchro switch function block description). After this time the function resets, no switching is performed						
CB1Pol_SynSWTimOut_ TPar_	Max.SynSW time*	msec	0	60000	1	0
Duration of the waiting time between object selection and command selection. At timeout no command is performed						
CB1Pol_SBOTimeout_ TPar_	SBO Timeout	msec	1000	20000	1	5000

^{*} If this parameter is set to 0, then the "StartSW" output is not activated

Table 78 Timer parameters of the circuit breaker control function

Available internal status variable and command channel

To generate an active scheme on the local LCD, there is an internal status variable indicating the state of the circuit breaker. Different graphic symbols can be assigned to the values. (See Chapter 3.2 of the document "EuroCAP configuration tool for EuroProt+ devices").

Status variable	Title	Explanation
		Can be:
		0: Intermediate
CB1Pol_stVal_lst_	Status	1: Off
		2: On
		3: Bad

The available control channel to be selected is:

Command channel	Title	Explanation
		Can be:
CB1Pol_Oper_Con_	Operation	On
-		Off

Using this channel, the pushbuttons on the front panel of the device can be assigned to close or open the circuit breaker. These are the "Local commands".

1.3.2.2 Disconnector control function (DisConn)

The Disconnector control function block can be used to integrate the disconnector control of the EuroProt+ device into the station control system and to apply active scheme screens of the local LCD of the device.

The Disconnector control function block receives remote commands from the SCADA system and local commands from the local LCD of the device, performs the prescribed checking and transmits the commands to the disconnector. It processes the status signals received from the disconnector and offers them to the status display of the local LCD and to the SCADA system.

Main features:

- Local (LCD of the device) and Remote (SCADA) operation modes can be enabled or disabled individually.
- Interlocking functions can be programmed by the user applying the inputs "EnaOff" (enabled trip command) and "EnaOn" (enabled close command), using the graphic equation editor.
- Programmed conditions can be used to temporarily disable the operation of the function block using the graphic equation editor.
- The function block supports the control models prescribed by the IEC 61850 standard.
- All necessary timing tasks are performed within the function block:
 - o Time limitation to execute a command
 - o Command pulse duration
 - o Filtering the intermediate state of the disconnector
 - Controlling the individual steps of the manual commands
- Sending trip and close commands to the disconnector
- Operation counter
- Event reporting

The Disconnector control function block has binary input signals. The conditions are defined by the user applying the graphic equation editor. The signals of the disconnector control are seen in the binary input status list.

Technical data

Function	Accuracy
Operate time accuracy	±5% or ±15 ms, whichever is greater

Table 79 Technical data of the disconnector control function

Parameters

Enumerated parameters

Parameter name	Title	Selection range	Default	
The control model of the	The control model of the disconnector node according to the IEC 61850 standard			
DisConn_ctlMod_EPar_	EPar_ ControlModel* Direct normal, Direct enhanced, SBO enhanced Direct normal			
Type of switch				
DisConn_SwTyp_EPar_	Type of Switch	N/A,Load break, Disconnector, Earthing Switch, HS Earthing Switch	Disconnector	

*ControlModel

- Direct normal: only command transmission
- Direct enhanced: command transmission with status check and command supervision
- SBO enhanced: Select Before Operate mode with status check and command supervision

Table 80 Enumerated parameters of the disconnector control function

Boolean parameter

Boolean parameter	Title	Explanation	
DisConn_DisOverR_BPar_	Forced check	If true, then the check function cannot be neglected by the check attribute defined by the IEC 61850 standard	

Table 81 Boolean parameter of the disconnector control function

Timer parameters

Parameter name	Title	Unit	Min	Max	Step	Default
		Offic	IVIIII	IVIAX	Step	Delault
Timeout for signaling failed of	peration					
DisConn_TimOut_TPar_	Max.Operating time	msec	10	20000	1	1000
Duration of the generated Or	and Off impulse					
DisConn_Pulse_TPar_	Pulse length	msec	50	30000	1	100
Waiting time, at expiry intermediate state of the disconnector is reported						
DisConn_MidPos_TPar_	Max.Intermediate time	msec	20	30000	1	100
Duration of the waiting time between object selection and command selection. At timeout no command is performed						
DisConn_SBOTimeout_ TPar_	SBO Timeout	msec	1000	20000	1	5000

Table 82 Timer parameters of the disconnector control function

Available internal status variable and command channel

To generate an active scheme on the local LCD, there is an internal status variable indicating the state of the disconnector. Different graphic symbols can be assigned to the values. (See Chapter 3.2 of the document "EuroCAP configuration tool for EuroProt+ devices").

Status variable	Title	Explanation
		Can be:
		0: Intermediate
DisConn I_stVal_lst_	Status	1: Off
		2: On
		3:Bad

The available control channel to be selected is:

Command channel	Title	Explanation
DisConn _Oper_Con_	Operation	Can be: On Off

Using this channel, the pushbuttons on the front panel of the device can be assigned to close or open the disconnector. These are the "Local commands".

1.3.3 Measuring functions

The measured values can be checked on the touch-screen of the device in the "On-line functions" page, or using an Internet browser of a connected computer. The displayed values are secondary voltages and currents, except the block "Line measurement". This specific block displays the measured values in primary units, using VT and CT primary value settings.

Analog value	Explanation
VT4 module	
Voltage Ch – U1	RMS value of the Fourier fundamental harmonic voltage component in
	phase L1
Angle Ch – U1	Phase angle of the Fourier fundamental harmonic voltage component in phase L1*
Voltage Ch – U2	RMS value of the Fourier fundamental harmonic voltage component in phase L2
Angle Ch – U2	Phase angle of the Fourier fundamental harmonic voltage component in phase L2*
Voltage Ch – U3	RMS value of the Fourier fundamental harmonic voltage component in phase L3
Angle Ch – U3	Phase angle of the Fourier fundamental harmonic voltage component in phase L3*
Voltage Ch – U4	RMS value of the Fourier fundamental harmonic voltage component in Channel U4
Angle Ch – U4	Phase angle of the Fourier fundamental harmonic voltage component in Channel U4*
CT4 module	
Current Ch - I1	RMS value of the Fourier fundamental harmonic current component in phase L1
Angle Ch - I1	Phase angle of the Fourier fundamental harmonic current component in phase L1*
Current Ch - I2	RMS value of the Fourier fundamental harmonic current component in phase L2
Angle Ch - I2	Phase angle of the Fourier fundamental harmonic current component in phase L2*
Current Ch - I3	RMS value of the Fourier fundamental harmonic current component in phase L3
Angle Ch - I3	Phase angle of the Fourier fundamental harmonic current component in phase L3*
Current Ch - I4	RMS value of the Fourier fundamental harmonic current component in Channel I4
Angle Ch - I4	Phase angle of the Fourier fundamental harmonic current component in Channel I4*
Line measurement (M	XU_L) (here the displayed information means primary value)
Active Power – P	Three-phase active power
Reactive Power – Q	Three-phase reactive power
Apparent Power – S	Three-phase power based on true RMS voltage and current
·	measurement
Current L1	True RMS value of the current in phase L1
Current L2	True RMS value of the current in phase L2
Current L3	True RMS value of the current in phase L3
Voltage L1	True RMS value of the voltage in phase L1
Voltage L2	True RMS value of the voltage in phase L2
Voltage L3	True RMS value of the voltage in phase L3
Voltage L12	True RMS value of the voltage between phases L1 L2
Voltage L23	True RMS value of the voltage between phases L2 L3
Voltage L31	True RMS value of the voltage between phases L3 L1
Frequency	Frequency
Metering (MTR)	

Forward MWh	Forward MWh
Backward MWh	Backward MWh
Forward MVArh	Forward MVArh
Backward MVArh	Backward MVArh
**	**

^{*} The reference angle is the phase angle of "Voltage Ch - U1"

Table 83 Measured analog values

^{**} Applied measuring functions depend on the HW and the SW configuratuion.

1.3.3.1 Current input function (CT4)

If the factory configuration includes a current transformer hardware module, the current input function block is automatically configured among the software function blocks. Separate current input function blocks are assigned to each current transformer hardware module.

A current transformer hardware module is equipped with four special intermediate current transformers. (See Chapter 5 of the EuroProt+ hardware description document.) As usual, the first three current inputs receive the three phase currents (IL1, IL2, IL3), the fourth input is reserved for zero sequence current, for the zero sequence current of the parallel line or for any additional current. Accordingly, the first three inputs have common parameters while the fourth current input needs individual setting.

The role of the current input function block is to

- set the required parameters associated to the current inputs,
- deliver the sampled current values for disturbance recording,
- perform the basic calculations
 - o Fourier basic harmonic magnitude and angle,
 - o True RMS value:
- provide the pre-calculated current values to the subsequent software modules,
- deliver the basic calculated values for on-line displaying.

Operation of the current input algorithm

The current input function block receives the sampled current values from the internal operating system. The scaling (even hardware scaling) depends on parameter setting. See parameters CT4_Ch13Nom_EPar_ (Rated Secondary I1-3) and CT4_Ch4Nom_EPar_ (Rated Secondary I4). The options to choose from are 1A or 5A (in special applications, 0.2A or 1A). This parameter influences the internal number format and, naturally, accuracy. (A small current is processed with finer resolution if 1A is selected.)

If needed, the phase currents can be inverted by setting the parameter CT4_Ch13Dir_EPar_ (Starpoint I1-3). This selection applies to each of the channels IL1, IL2 and IL3. The fourth current channel can be inverted by setting the parameter CT4_Ch4Dir_EPar (Direction I4). This inversion may be needed in protection functions such as distance protection, differential protection or for any functions with directional decision.

These sampled values are available for further processing and for disturbance recording.

The performed basic calculation results the Fourier basic harmonic magnitude and angle and the true RMS value. These results are processed by subsequent protection function blocks and they are available for on-line displaying as well.

The function block also provides parameters for setting the primary rated currents of the main current transformer. This function block does not need that parameter setting. These values are passed on to function blocks such as displaying primary measured values, primary power calculation, etc.

Technical data

Function	Range	Accuracy
Current accuracy	20 – 2000% of In	±1% of In

Table 84 Technical data of the current input

Parameters

Enumerated parameters

Parameter name	Title	Selection range	Default	
Rated secondary current of the first three input channels. 1A or 5A is selected by parameter setting, no hardware modification is needed.				
CT4_Ch13Nom_EPar_	Rated Secondary I1-3	1A,5A	1A	
Rated secondary current no hardware modification	of the fourth input channel. 1A or 5, is needed.	A is selected by par	ameter setting,	
CT4_Ch4Nom_EPar_	Rated Secondary I4	1A,5A (0.2A or 1A)	1A	
Definition of the positive direction of the first three currents, given by location of the secondary star connection point				
CT4_Ch13Dir_EPar_	Starpoint I1-3	Line,Bus	Line	
Definition of the positive of	lirection of the fourth current, given	as normal or invert	ed	
CT4_Ch4Dir_EPar_	Direction I4	Normal,Inverted	Normal	

Table 85 The enumerated parameters of the current input function

Floating point parameters

Parameter name	Title	Dim.	Min	Max	Default
Rated primary current of o	channel1				
CT4_Pril1_FPar_	Rated Primary I1	Α	100	4000	1000
Rated primary current of c	hannel2				
CT4_Pril2_FPar	Rated Primary I2	Α	100	4000	1000
Rated primary current of c	channel3				
CT4_Pril3_FPar_	Rated Primary I3	Α	100	4000	1000
Rated primary current of c	hannel4				
CT4_PriI4_FPar_	Rated Primary I4	Α	100	4000	1000

Table 86 The floating point parameters of the current input function

NOTE: The rated primary current of the channels is not needed for the current input function block itself. These values are passed on to the subsequent function blocks.

The **measured values** of the current input function block.

Measured value	Dim.	Explanation
Current Ch - I1	A(secondary)	Fourier basic component of the current in channel IL1
Angle Ch - I1	degree	Vector position of the current in channel IL1
Current Ch – I2	A(secondary)	Fourier basic component of the current in channel IL2
Angle Ch – I2	degree	Vector position of the current in channel IL2
Current Ch – I3	A(secondary)	Fourier basic component of the current in channel IL3
Angle Ch – I3	degree	Vector position of the current in channel IL3
Current Ch – I4	A(secondary)	Fourier basic component of the current in channel I4
Angle Ch – I4	degree	Vector position of the current in channel I4

Table 87 The measured analogue values of the current input function

NOTE1: The scaling of the Fourier basic component is such that if pure sinusoid 1A RMS of the rated frequency is injected, the displayed value is 1A. (The displayed value does not depend on the parameter setting values "Rated Secondary".)

NOTE2: The reference of the vector position depends on the device configuration. If a voltage input module is included, then the reference vector (vector with angle 0 degree) is the vector calculated for the first voltage input channel of the first applied voltage input module. If no voltage input module is configured, then the reference vector (vector with angle 0 degree)

is the vector calculated for the first current input channel of the first applied current input module.

Figure~8 shows an example of how the calculated Fourier components are displayed in the on-line block. (See the document "EuroProt+ Remote user interface description".)

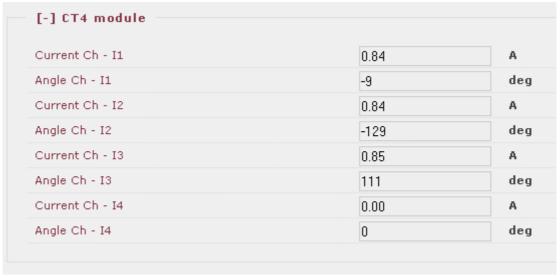


Figure 8 Example: On-line displayed values for the current input module

1.3.3.2 Voltage input function (VT4)

If the factory configuration includes a voltage transformer hardware module, the voltage input function block is automatically configured among the software function blocks. Separate voltage input function blocks are assigned to each voltage transformer hardware module.

A voltage transformer hardware module is equipped with four special intermediate voltage transformers. (See Chapter 6 of the EuroProt+ hardware description document.) As usual, the first three voltage inputs receive the three phase voltages (UL1, UL2, UL3), the fourth input is reserved for zero sequence voltage or for a voltage from the other side of the circuit breaker for synchron switching. All inputs have a common parameter for type selection: 100V or 200V.

Additionally, there is a correction factor available if the rated secondary voltage of the main voltage transformer (e.g. 110V) does not match the rated input of the device.

The role of the voltage input function block is to

- set the required parameters associated to the voltage inputs,
- deliver the sampled voltage values for disturbance recording,
- perform the basic calculations
 - o Fourier basic harmonic magnitude and angle,
 - o True RMS value;
- provide the pre-calculated voltage values to the subsequent software modules,
- deliver the basic calculated values for on-line displaying.

Operation of the voltage input algorithm

The voltage input function block receives the sampled voltage values from the internal operating system. The scaling (even hardware scaling) depends on parameter setting. See the parameter VT4_Type_EPar_ (Range). The options to choose from are 100V or 200V. This parameter influences the internal number format and, naturally, accuracy. (A small voltage is processed with finer resolution if 100V is selected.)

The connection of the first three VT secondary winding must be set to reflect actual physical connection. The associated parameter is VT4_Ch13Nom_EPar_ (Connection U1-3). The selection can be: Ph-N, Ph-Ph or Ph-N-Isolated.

The Ph-N option is applied in solidly grounded networks, where the measured phase voltage is never above 1.5-Un. In this case the primary rated voltage of the VT must be the value of the rated PHASE-TO-NEUTRAL voltage.

The Ph-N option is applied in compensated or isolated networks, where the measured phase voltage can be above 1.5-Un even in normal operation. In this case the primary rated voltage of the VT must be the value of the rated PHASE-TO-PHASE voltage.

If phase-to-phase voltage is connected to the VT input of the device, then the Ph-Ph option is to be selected. Here, the primary rated voltage of the VT must be the value of the rated PHASE-TO-PHASE voltage. This option must not be selected if the distance protection function is supplied from the VT input.

The fourth input is reserved for zero sequence voltage or for a voltage from the other side of the circuit breaker for synchron switching. Accordingly, the connected voltage must be identified with parameter setting VT4_Ch4Nom_EPar_ (Connection U4). Here, phase-to-neutral or phase-to-phase voltage can be selected: Ph-N,Ph-Ph

If needed, the phase voltages can be inverted by setting the parameter VT4_Ch13Dir_EPar_ (Direction U1-3). This selection applies to each of the channels UL1, UL2 and UL3. The fourth voltage channel can be inverted by setting the parameter VT4_Ch4Dir_EPar_ (Direction U4). This inversion may be needed in protection functions such as distance protection, differential protection or for any functions with directional decision, or for checking the voltage vector positions.

Additionally, there is a correction factor available if the rated secondary voltage of the main voltage transformer (e.g. 110V) does not match the rated input of the device. The related parameter is VT4_CorrFact_IPar_ (VT correction). As an example: if the rated secondary voltage of the main voltage transformer is 110V, then select Type 100 for the parameter "Range" and the required value to set here is 110%.

These sampled values are available for further processing and for disturbance recording.

The performed basic calculation results the Fourier basic harmonic magnitude and angle and the true RMS value of the voltages. These results are processed by subsequent protection function blocks and they are available for on-line displaying as well.

The function block also provides parameters for setting the primary rated voltages of the main voltage transformer. This function block does not need that parameter setting. These values are passed on to function blocks such as displaying primary measured values, primary power calculation, etc. Concerning the rated voltage, see the instructions related to the parameter for the connection of the first three VT secondary winding.

Parameters

Enumerated parameters

Enamoratou paramotoro					
Parameter name	Title	Selection range	Default		
Rated secondary voltage setting, no hardware mod	of the input channels. 100 V ification is needed.	or 200V is selected by pa	rameter		
VT4_Type_EPar_	Range	Type 100, Type 200	Type 100		
Connection of the first three	ee voltage inputs (main VT s	econdary)			
VT4_Ch13Nom_EPar_	Connection U1-3	Ph-N, Ph-Ph, Ph-N-Isolated	Ph-N		
Selection of the fourth channel input: phase-to-neutral or phase-to-phase voltage					
VT4_Ch4Nom_EPar_	Connection U4	Ph-N,Ph-Ph	Ph-Ph		
Definition of the positive of	Definition of the positive direction of the first three input channels, given as normal or inverted				
VT4_Ch13Dir_EPar_	Direction U1-3	Normal,Inverted	Normal		
Definition of the positive of	Definition of the positive direction of the fourth voltage, given as normal or inverted				
VT4_Ch4Dir_EPar_	Direction U4	Normal,Inverted	Normal		

Table 88 The enumerated parameters of the voltage input function

Integer parameter

miogo: paramoto.						
Parameter name	Title	Unit	Min	Max	Step	Default
Voltage correction						
VT4 CorrFact IPar	VT correction	%	100	115	1	100

Table 89 The integer parameter of the voltage input function

Floating point parameters

i loating point parameter	•				
Parameter name	Title	Dim.	Min	Max	Default
Rated primary voltage of c	hannel1				
VT4_PriU1_FPar	Rated Primary U1	kV	1	1000	100
Rated primary voltage of c	hannel2				
VT4_PriU2_FPar	Rated Primary U2	kV	1	1000	100
Rated primary voltage of c	hannel3				
VT4_PriU3_FPar	Rated Primary U3	kV	1	1000	100
Rated primary voltage of c	hannel4				
VT4_PriU4_FPar	Rated Primary U4	kV	1	1000	100

Table 90 The floating point parameters of the voltage input function

NOTE: The rated primary voltage of the channels is not needed for the voltage input function block itself. These values are passed on to the subsequent function blocks.

Function	Range	Accuracy
Voltage accuracy	30% 130%	< 0.5 %

Table 91 Technical data of the voltage input

Measured values

Measured value	Dim.	Explanation
Voltage Ch - U1	V(secondary)	Fourier basic component of the voltage in channel UL1
Angle Ch - U1	degree	Vector position of the voltage in channel UL1
Voltage Ch – U2	V(secondary)	Fourier basic component of the voltage in channel UL2
Angle Ch – U2	degree	Vector position of the voltage in channel UL2
Voltage Ch – U3	V(secondary)	Fourier basic component of the voltage in channel UL3
Angle Ch – U3	degree	Vector position of the voltage in channel UL3
Voltage Ch – U4	V(secondary)	Fourier basic component of the voltage in channel U4
Angle Ch – U4	degree	Vector position of the voltage in channel U4

Table 92 The measured analogue values of the voltage input function

NOTE1: The scaling of the Fourier basic component is such <u>if pure sinusoid 57V RMS</u> of the rated frequency is injected, the displayed value is 57V. (The displayed value does not depend on the parameter setting values "Rated Secondary".)

NOTE2: The reference vector (vector with angle 0 degree) is the vector calculated for the first voltage input channel of the first applied voltage input module.

The figure below shows an example of how the calculated Fourier components are displayed in the on-line block. (See the document EuroProt+ "Remote user interface description".)

Figure 9 Example: On-line displayed values for the voltage input module

1.3.3.3 Line measurement function (MXU)

The measurement

The input values of the EuroProt+ devices are the secondary signals of the voltage transformers and those of the current transformers.

These signals are pre-processed by the "Voltage transformer input" function block and by the "Current transformer input" function block. These function blocks are described in separate documents. The pre-processed values include the Fourier basic harmonic phasors of the voltages and currents and the true RMS values. Additionally, it is in these function blocks that parameters are set concerning the voltage ratio of the primary voltage transformers and current ratio of the current transformers.

Based on the pre-processed values and the measured transformer parameters, the "Line measurement" function block calculates - depending on the hardware and software configuration - the primary RMS values of the voltages and currents and some additional values such as active and reactive power, symmetrical components of voltages and currents. These values are available as primary quantities and they can be displayed on the on-line screen of the device or on the remote user interface of the computers connected to the communication network and they are available for the SCADA system using the configured communication system.

Reporting the measured values and the changes

It is usual for the SCADA systems that they sample the measured and calculated values in regular time periods and additionally they receive the changed values as reports at the moment when any significant change is detected in the primary system. The "Line measurement" function block is able to perform such reporting for the SCADA system.

Operation of the line measurement function block

The inputs of the line measurement function are

- the Fourier components and true RMS values of the measured voltages and currents,
- frequency measurement,
- parameters.

The outputs of the line measurement function are

- displayed measured values,
- reports to the SCADA system.

NOTE: the scaling values are entered as parameter setting for the "Voltage transformer input" function block and for the "Current transformer input" function block.

The measured values

The **measured values** of the line measurement function depend on the hardware configuration. As an example, Table *93* shows the list of the measured values available in a configuration for solidly grounded networks.

Measured value	Explanation
MXU_P_OLM_	Active Power – P (Fourier base harmonic value)
MXU_Q_OLM_	Reactive Power – Q (Fourier base harmonic value)
MXU_S_OLM_	Apparent Power – S (Fourier base harmonic value)
MXU_I1_OLM_	Current L1
MXU_I2_OLM_	Current L2
MXU_I3_OLM_	Current L3
MXU_U1_OLM_	Voltage L1
MXU_U2_OLM_	Voltage L2
MXU_U3_OLM_	Voltage L3
MXU_U12_OLM_	Voltage L12
MXU_U23_OLM_	Voltage L23
MXU_U31_OLM_	Voltage L31
MXU_f_OLM_	Frequency

Table 93 Example: Measured values in a configuration for solidly grounded networks

Another example is Figure 10, where the measured values available are shown as on-line information in a configuration for compensated networks.

Active Power - P	17967.19	kW
Reactive Power - Q	10414.57	kVAı
Current L1	97	А
Current L2	97	А
Current L3	97	А
Voltage L12	120.0	k∀
Voltage L23	120.0	k₩
Voltage L31	120.0	k₩
Residual Voltage	0.0	k∀
Frequency	50.00	Hz

Figure 10 Example: Measured values in a configuration for compensated networks The available quantities are described in the configuration description documents.

Reporting the measured values and the changes

For reporting, additional information is needed, which is defined in parameter setting. As an example, in a configuration for solidly grounded networks the following parameters are available:

Enumerated parameters

Parameter name	Title	Selection range	Default				
Selection of the reporting mode for active power measurement							
MXU_PRepMode_EPar_	Operation ActivePower	Off, Amplitude, Integrated	Amplitude				
Selection of the reporting n	node for reactive power meas	surement					
MXU_QRepMode_EPar_	Operation ActivePower	Off, Amplitude, Integrated	Amplitude				
Selection of the reporting n	node for apparent power mea	asurement					
MXU_SRepMode_EPar_	Operation ApparPower	Off, Amplitude, Integrated	Amplitude				
Selection of the reporting mode for current measurement							
MXU_IRepMode_EPar_	Operation Current	Off, Amplitude, Integrated	Amplitude				
Selection of the reporting n	node for voltage measureme	nt					
MXU_URepMode_EPar_	Operation Voltage	Off, Amplitude, Integrated	Amplitude				
Selection of the reporting mode for frequency measurement							
MXU_fRepMode_EPar_	Operation Frequency	Off, Amplitude, Integrated	Amplitude				

Table 94 The enumerated parameters of the line measurement function

The selection of the reporting mode items is explained in Figure 11 and in Figure 12.

"Amplitude" mode of reporting

If the "Amplitude" mode is selected for reporting, a report is generated if the measured value leaves the deadband around the previously reported value. As an example, Figure 11 shows that the current becomes higher than the value reported in "report1" PLUS the Deadband value, this results "report2", etc.

For this mode of operation, the Deadband parameters are explained in Table 95.

The "Range" parameters in Table 95 are needed to evaluate a measurement as "out-of-range".

Floating point parameters

Parameter name	Title	Dim.	Min	Max	Step	Default
Deadband value for the	ווווט.	141111	IVIGA	Juleh	Delauit	
MXU PDeadB FPar	N/N//	0.1	100000	0.01	10	
	Deadband value - P	IVIVV	0.1	100000	0.01	10
Range value for the active power MXU PRange FPar Range value - P			1	100000	0.01	500
		MW	ļ !	100000	0.01	300
Deadband value for the reactive power Deadband value - D						
MXU_QDeadB_FPar_	Q	MVAr	0.1	100000	0.01	10
Range value for the rea						
MXU_QRange_FPar_	Range value - Q	MVAr	1	100000	0.01	500
Deadband value for the						
MXU_SDeadB_FPar_	Deadband value - S	MVA	0.1	100000	0.01	10
Range value for the app						
MXU_SRange_FPar_	Range value - S	MVA	1	100000	0.01	500
Deadband value for the						
MXU_IDeadB_FPar_	Deadband value - I	Α	1	2000	1	10
Range value for the current						
MXU_IRange_FPar_	Α	1	5000	1	500	
Deadband value for the phase-to-neutral voltage						
MXU_UPhDeadB_ FPar	Deadband value – U ph-N	kV	0.1	100	0.01	1
Range value for the phase-to-neutral voltage						
MXU_UPhRange_	Range value –	1.37	4	1000	0.4	004
FPar_	U ph-N	kV	1	1000	0.1	231
Deadband value for the phase-to-phase voltage						
MXU_UPPDeadB_	0.1	100	0.01	1		
FPar_	kV	0.1	100	0.01	1	
Range value for the phase-to-phase voltage						
MXU_UPPRange_	Range value –	kV	1	1000	0.1	400
FPar_ Upn-pn						
Deadband value for the		T = -	1		T	
MXU_fDeadB_FPar_	Deadband value - f	Hz	0.01	1	0.01	0.02
Range value for the cur		1	1		1	
MXU_fRange_FPar_	Range value - f	Hz	0.05	10	0.01	5

Table 95 The floating-point parameters of the line measurement function

Amplitude

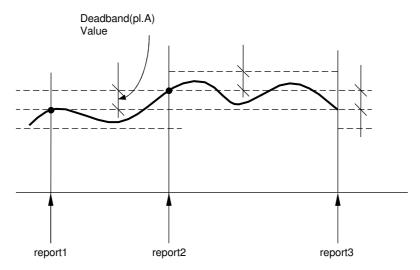


Figure 11 Reporting if "Amplitude" mode is selected

"Integral" mode of reporting

If the "Integrated" mode is selected for reporting, a report is generated if the time integral of the measured value since the last report gets becomes larger, in the positive or negative direction, then the (deadband*1sec) area. As an example, Figure 12 shows that the integral of the current in time becomes higher than the Deadband value multiplied by 1sec, this results "report2", etc.

Integrated

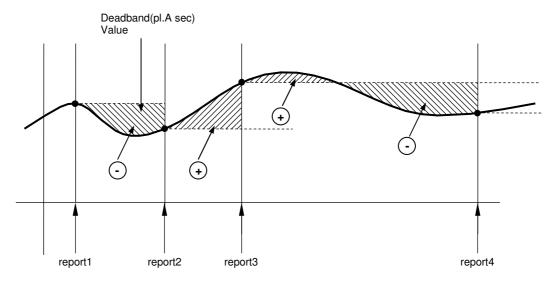


Figure 12 Reporting if "Integrated" mode is selected

Periodic reporting

Periodic reporting is generated independently of the changes of the measured values when the defined time period elapses. The required parameter setting is shown in Table *96*.

Integer parameters

Parameter name	Title	Unit	Min	Max	Step	Default	
Reporting time period for the active power							
MXU_PIntPer_IPar_	Report period P	sec	0	3600	1	0	
Reporting time period for the rea	active power						
MXU_QIntPer_IPar_	Report period Q	sec	0	3600	1	0	
Reporting time period for the apparent power							
MXU_SIntPer_IPar_	Report period S	sec	0	3600	1	0	
Reporting time period for the voltage							
MXU_UIntPer_IPar_	Report period U	sec	0	3600	1	0	
Reporting time period for the current							
MXU_IIntPer_IPar_	Report period I	sec	0	3600	1	0	
Reporting time period for the frequency							
MXU_fIntPer_IPar_	Report period f	sec	0	3600	1	0	

Table 96 The integer parameters of the line measurement function

If the reporting time period is set to 0, then no periodic reporting is performed for this quantity.

All reports can be disabled for a quantity if the reporting mode is set to "Off". See Table 94.

Technical data

Function	Range	Accuracy
Current accuracy		
with CT/5151 or CT/5102 modules	0,2 ln – 0,5 ln	±2%, ±1 digit
with C1/5151 of C1/5102 modules	0,5 ln – 20 ln	±1%, ±1 digit
with CT/1500 module	0,03 ln – 2 ln	±0,5%, ±1 digit
Voltage accuracy	5 – 150% of Un	±0.5% of Un, ±1 digit
Power accuracy	l>5% In	±3%, ±1 digit
Frequency accuracy	U>3.5%Un 45Hz – 55Hz	2mHz

Table 97 Technical data of line measurement

1.3.4 Disturbance recorder

The DVEZ configuration contains a disturbance recorder function. The details are described in the document shown in Table 98.

Name	Title	Document
DRE	Disturbance Rec	Disturbance recorder function block description

Table 98 Implemented disturbance recorder function

The recorded analog channels:

*Recorded analog signal	Explanation
UL1	Measured voltage of line 1
UL2	Measured voltage of line 2
UL3	Measured voltage of line 3
IL1	Measured current for all overcurrent protection functions in line 1
IL2	Measured current for all overcurrent protection functions in line 2
IL3	Measured current for all overcurrent protection functions in line 3

^{*}The recorded analog channels depend on the hardware configuration.

Table 99 Disturbance recorder, recorded analog channels

The recorded binary channels are identified by the User:

-	The recent death and any entain	micro and identification of the edecit
	Recorded binary signal	Explanation

Table 100 Disturbance recorder, recorded binary channels

Enumerated parameter

Enumerated parameter					
Parameter name Title		Selection range	Default		
Parameter for activation					
DRE Oper EPar	Operation	Off, On	Off		

Table 101 The enumerated parameter of the disturbance recorder function

Timer parameters

Parameter name	Title	Unit	Min	Max	Step	Default
Pre-fault time:		•		•	-	•
DRE_PreFault_TPar_	PreFault	msec	100	1000	1	200
Post-fault time:						
DRE_PostFault_TPar_	PostFault	msec	100	1000	1	200
Overall-fault time limit:		_	_	-	_	_
DRE_MaxFault_TPar_	MaxFault	msec	500	10000	1	1000

Table 102 The timer parameters of the disturbance recorder function

1.3.5 Event recorder

The events of the device and those of the protection functions are recorded with a time stamp of 1 ms time resolution. This information with indication of the generating function can be checked on the touch-screen of the device in the "Events" page, or using an Internet browser of a connected computer.

The possible events depend on the required function of the bay control unit.

1.4 LED assignment

On the front panel of the device there are "User LED"-s with the "Changeable LED description label" (See the document "*Quick start guide to the devices of the EuroProt+ product line*"). Some LED-s are factory assigned, some are free to be defined by the user.